The parietal cortex is highly multimodal and plays a key role in the processing of objects and actions in space, both in human and nonhuman primates. Despite the accumulated knowledge in both species, we lack the following: (1) a general description of the multisensory convergence in this cortical region to situate sparser lesion and electrophysiological recording studies; and (2) a way to compare and extrapolate monkey data to human results. Here, we use functional magnetic resonance imaging (fMRI) in the monkey to provide a bridge between human and monkey studies. We focus on the intraparietal sulcus (IPS) and specifically probe its involvement in the processing of visual, tactile, and auditory moving stimuli around and toward the face. We describe three major findings: (1) the visual and tactile modalities are strongly represented and activate mostly nonoverlapping sectors within the IPS. The visual domain occupies its posterior two-thirds and the tactile modality its anterior one-third. The auditory modality is much less represented, mostly on the medial IPS bank. (2) Processing of the movement component of sensory stimuli is specific to the fundus of the IPS and coincides with the anatomical definition of monkey ventral intraparietal area (VIP). (3) A cortical sector within VIP processes movement around and toward the face independently of the sensory modality. This amodal representation of movement may be a key component in the construction of peripersonal space. Overall, our observations highlight strong homologies between macaque and human VIP organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619317 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1421-12.2013 | DOI Listing |
Alzheimers Dement
January 2025
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Introduction: Alzheimer's disease (AD) in Down syndrome (DS) is associated with changes in brain structure. It is unknown if thickness and volumetric changes can identify AD stages and if they are similar to other genetic forms of AD.
Methods: Magnetic resonance imaging scans were collected for 178 DS adults (106 nonclinical, 45 preclinical, and 27 symptomatic).
Eur J Neurosci
January 2025
National Institute of Education, Nanyang Technological University, Singapore.
Approximately 15%-20% of school-aged children suffer from mathematics learning difficulties (MLD). Most children with developmental dyscalculia (DD) or MLD also have comorbid cognitive deficits. Recent literature suggests that research should focus on uncovering the neural underpinnings of MLD across more inclusive samples, rather than limiting studies to pure cases of DD or MLD with highly stringent inclusion criteria.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Institute for Physiology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.
Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).
Cureus
December 2024
Department of Internal Medicine, Osmania Medical College, Hyderabad, IND.
Intramedullary spinal tuberculomas constitute a small percentage of spinal tuberculosis. These, in combination with brain tuberculomas, are an uncommon manifestation of central nervous system (CNS) tuberculosis. This report details a unique case of a 32-year-old retroviral disease-positive male who presented with a two-month history of symmetrical quadriparesis and recent seizures.
View Article and Find Full Text PDFEpilepsia
January 2025
Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.
Objective: The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!