Polar residues and their positional context dictate the transmembrane domain interactions of influenza A neuraminidases.

J Biol Chem

Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

Published: April 2013

Interactions that facilitate transmembrane domain (TMD) dimerization have been identified mainly using synthetic TMDs. Here, we investigated how inherent properties within natural TMDs modulate their interaction strength by exploiting the sequence variation in the nine neuraminidase subtypes (N1-N9) and the prior knowledge that a N1 TMD oligomerizes. Initially, consensus TMDs were created from the influenza A virus database, and their interaction strengths were measured in a biological membrane system. The TMD interactions increased with respect to decreasing hydrophobicity across the subtypes (N1-N9) and within the human N1 subtype where the N1 TMDs from the pandemic H1N1 strain of swine origin were found to be significantly less hydrophobic. The hydrophobicity correlation was attributed to the conserved amphipathicity within the TMDs as the interactions were abolished by mutating residues on the polar faces that are unfavorably positioned in the membrane. Similarly, local changes enhanced the interactions only when a larger polar residue existed on the appropriate face in an unfavorable membrane position. Together, the analysis of this unique natural TMD data set demonstrates how polar-mediated TMD interactions from bitopic proteins depend on which polar residues are involved and their positioning with respect to the helix and the membrane bilayer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624445PMC
http://dx.doi.org/10.1074/jbc.M112.440230DOI Listing

Publication Analysis

Top Keywords

polar residues
8
transmembrane domain
8
subtypes n1-n9
8
tmd interactions
8
interactions
6
tmd
5
tmds
5
polar
4
residues positional
4
positional context
4

Similar Publications

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials.

Molecules

January 2025

Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.

The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.

View Article and Find Full Text PDF

This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Labill. and L. for neuroprotective purposes.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!