Free-standing colloidal arrays can be easily transferred to supported fibers. These films conform and provide the template to have consistent submicrometer and nanometer features transferred to the periphery of rough, 7 μm diameter fibers. This technique is adjustable to a number of fiber surfaces and colloidal template sizes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201202821DOI Listing

Publication Analysis

Top Keywords

facile colloidal
4
colloidal lithography
4
lithography rough
4
rough non-planar
4
non-planar surfaces
4
surfaces asymmetric
4
asymmetric patterning
4
patterning free-standing
4
free-standing colloidal
4
colloidal arrays
4

Similar Publications

Programmable Food-Derived Peptide Coassembly Strategies for Boosting Targeted Colitis Therapy by Enhancing Oral Bioavailability and Restoring Gut Microenvironment Homeostasis.

ACS Nano

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.

Orally targeting nanostrategies of multiple nutraceuticals have attracted increasing attention in ulcerative colitis (UC) therapy for superior patient compliance, cost-effectiveness, and biocompatibility. However, the actual targeting delivery and bioefficacy of nutraceuticals are extremely restricted by their poor solubility, interior gastrointestinal retention, and base permeability. Herein, we developed controllable colon-targeting nanoparticles (NPs) composed of a quaternary ammonium chitosan (HTCC) shell and succinic acid-modified γ-cyclodextrin (SACD) core for precise UC treatment.

View Article and Find Full Text PDF

Automated glycan assembly (AGA) streamlines the synthesis of complex oligosaccharides. The reducing end of the oligosaccharide serves as an attachment site to the polymer support to liberate a free reducing end or an aminopentanol for ready conjugation to carrier proteins or surfaces. The facile installation of different aglycons on oligosaccharides has not been possible via AGA until now.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Antibacterial poly(ethyl methacrylate) surfaces constructed by facile amination with polyethyleneimine of different architectures.

Colloids Surf B Biointerfaces

December 2024

Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China. Electronic address:

Polymethacrylate and its derivatives are widely used in food industry and biomedical applications for their plasticity, biocompatibility and optical transparency. However, susceptibility to bacterial growth on their surfaces limits their applications. In this study, linear and branched polyethyleneimine (PEI) molecules were grafted onto poly(ethyl methacrylate) (PEMA) via aminolysis using a simple one-step method to enhance the antibacterial properties of PEMA films.

View Article and Find Full Text PDF

Facile synthesis of Ir-based high-entropy alloy nanomaterials for efficient oxygen evolution electrocatalysis.

J Colloid Interface Sci

December 2024

Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, China; School of Materials Science & Engineering, Xi'an University of Technology, Xi'an 710048, China. Electronic address:

High-entropy alloy (HEA) nanomaterials have emerged as promising candidates as oxygen evolution reaction (OER) electrocatalyst to overcome the existing issues of the sluggish reaction kinetics and poor stability. In this study, IrRuCoCuNi HEA three-dimensional-nanoframeworks (3DNF) are prepared using a scalable approach-the spray-drying technique combined with thermal decomposition reduction (SD-TDR). The optimized catalyst, IrRuCoCuNi, demonstrates superior OER performance, with an overpotential of 264 mV at 10 mA cm and a Tafel slope of 47 mV dec, considerably surpassing the catalytic activity of commercial IrO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!