An automated approach for scoring in vitro micronuclei (MN) has been described in which flow cytometric analysis is combined with compound exposure, processing, and sampling in a single 96-well plate (Bryce SM et al. [2010]: Mutat Res 703:191-199). The current report describes protocol optimization and an interlaboratory assessment of the assay's transferability and reproducibility. In a training phase, the methodology was refined and collaborating laboratories were qualified by repeatedly testing three compounds. Second, a set of 32 chemicals comprised of reference genotoxicants and presumed non-genotoxicants was tested at each of four sites. TK6 cells were exposed to 10 closely spaced compound concentrations for 1.5- to 2-cell population doublings, and were then stained and lysed for flow cytometric analysis. MN frequencies were determined by evaluating ≥ 5,000 cells per replicate well, and several indices of cytotoxicity were acquired. The prevalence of positive results varied according to the MN-fold increase used to signify a genotoxic result, as well as the endpoint used to define a cytotoxicity limit. By varying these parameters, assay sensitivity and specificity values ranged from 82 to 98%, and 86 to 97%, respectively. In a third phase, one laboratory tested a further six genotoxicants and five non-genotoxic apoptosis inducers. In these experiments assay specificity was markedly improved when top concentration selection was based on two cytotoxicity endpoints-relative survival and quantification of ethidium monoazide-positive events. Collectively, the results indicate that the miniaturized assay is transferable across laboratories. The 96-well format consumes considerably less compound than conventional in vitro MN test methods, and the high information content provided by flow cytometry helps guard against irrelevant positive results arising from overt toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.21760DOI Listing

Publication Analysis

Top Keywords

flow cytometric
12
tk6 cells
8
protocol optimization
8
cytometric analysis
8
flow
4
cytometric 96-well
4
96-well microplate-based
4
microplate-based vitro
4
vitro micronucleus
4
assay
4

Similar Publications

Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).

View Article and Find Full Text PDF

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.

View Article and Find Full Text PDF

CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy.

Int J Mol Sci

January 2025

Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.

Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.

View Article and Find Full Text PDF

Flow cytometric (FC) immunophenotyping and T-cell receptor (TCR) gene rearrangement studies are essential ancillary methods for the characterisation of T-cell lymphomas. Traditional manual gating and polymerase chain reaction (PCR)-based analyses can be labour-intensive, operator-dependent, and have limitations in terms of sensitivity and specificity. The objective of our study was to investigate the efficacy of the Phenograph and t-SNE algorithms together with an antibody specific for the TCR β-chain constant region 1 (TRBC1) to identify monoclonal T-cell populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!