Isothiocyanates have been reported to exert antimicrobial activity. These compounds are found in a licensed native preparation of nasturtium (Tropaeoli majoris herba) and horseradish (Armoraciae rusticanae radix) which is used for treatment of upper respiratory and urinary tract infections. The aim of our investigation was to assess the antimicrobial activity of a mixture of the contained benzyl-, allyl-, and phenylethyl- isothiocyanates against clinically important bacterial and fungal pathogens including antimicrobial resistant isolates. Susceptibility testing was performed by agar-dilution technique. Isothiocyanates were mixed in proportions identical to the licensed drug. Minimum inhibitory- and minimum bactericidal concentrations were assessed. The Minimum inhibitory concentration90 was defined as the concentration which inhibited 90% of the microbial species tested. H. influenzae, M. catarrhalis, S. marcescens, P. vulgaris, and Candida spp. were found to be highly susceptible, with minimum inhibitory concentration90 -values ranging between ≤0.0005% and 0.004% (v/v) of total ITC. Intermediate susceptibilities were observed for S. aureus, S. pyogenes, S. pneumoniae, K. pneumoniae, E. coli and P. aeruginosa, with Minimum inhibitory concentration90 -values ranging between 0.004% and 0.125% (v/v), but with elevated Minimum bactericidal concentrations90-values (2-7 dilution steps above Minimum inhibitory concentration90). Low susceptibilities were determined for viridans streptococci and enterococci. Interestingly, both resistant and non-resistant bacteria were similarly susceptible to the test preparation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/s-0032-1331754 | DOI Listing |
Sci Rep
January 2025
Department of Pre-clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Thailand.
This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
Laboratory of Medical Microbiology, Ghent University Hospital, Ghent, Belgium.
Purpose: Mortality and morbidity of patients with bloodstream infection (BSI) remain high despite advances in diagnostic methods and efforts to speed up reporting. This study investigated the impact of reporting rapid Minimum Inhibitory Concentration (MIC)-results in Gram negative BSIs with the ASTar system (Q-linea, Uppsala, Sweden) on the adaptation of empirically started antimicrobial therapy. We performed a real-world study during which antimicrobial susceptibility testing (AST) results were instantly reported to the treating physician in an established multidisciplinary antimicrobial stewardship setting.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea.
The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.
View Article and Find Full Text PDFPharmaceutics
January 2025
Center for Pharmacy, University of Bergen, 5020 Bergen, Norway.
Polymyxin E (PME), a polymyxin antibiotic, serves as a final resort against antibiotic resistance. Nephrotoxicity is the primary concern when employing PME. To alleviate this issue, researchers have explored strategies including dosing adjustments and innovative formulations.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco.
Background/objectives: The rise of antibiotic-resistant pathogens has become a global health crisis, necessitating the development of alternative antimicrobial strategies. This study aimed to optimize the antibacterial effects of essential oils (EOs) from , , and , enhancing their efficacy through optimized mixtures.
Methods: This study utilized a simplex-centroid design to optimize the mixture ratios of EOs for maximal antibacterial and antioxidant effectiveness.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!