Many biological and man-made networked systems are characterized by the simultaneous presence of different sub-networks organized in separate layers, with links and nodes of qualitatively different types. While during the past few years theoretical studies have examined a variety of structural features of complex networks, the outstanding question is whether such features are characterizing all single layers, or rather emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network representation. Here we address this issue with the help of real data. We analyze the structural properties of an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which each commercial airline defines a network layer. We examine how several structural measures evolve as layers are progressively merged together. In particular, we discuss how the topology of each layer affects the emergence of structural properties in the aggregate network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583169 | PMC |
http://dx.doi.org/10.1038/srep01344 | DOI Listing |
Sci Rep
January 2025
Department of Artificial Intelligence and Data Science, College of Computer Science and Engineering, University of Hail, Hail, Saudi Arabia.
In the present digital scenario, the explosion of Internet of Things (IoT) devices makes massive volumes of high-dimensional data, presenting significant data and privacy security challenges. As IoT networks enlarge, certifying sensitive data privacy while still employing data analytics authority is vital. In the period of big data, statistical learning has seen fast progressions in methodological practical and innovation applications.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, 524088, China.
To address the problems of complex cloud features in satellite cloud maps, inaccurate typhoon localization, and poor target detection accuracy, this paper proposes a new typhoon localization algorithm, named TGE-YOLO. It is based on the YOLOv8n model with excellent high-low feature fusion capability and innovatively achieves the organic combination of feature fusion, computational efficiency, and localization accuracy. Firstly, the TFAM_Concat module is creatively designed in the neck network, which comprehensively utilizes the detailed information of shallow features and the semantic information of deeper features, enhancing the fusion ability of features at each layer.
View Article and Find Full Text PDFMed Image Anal
January 2025
Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:
The relationship between brain connections and non-imaging phenotypes is increasingly studied using deep neural networks. However, the local and global properties of the brain's white matter networks are often overlooked in convolutional network design. We introduce TractGraphFormer, a hybrid Graph CNN-Transformer deep learning framework tailored for diffusion MRI tractography.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.
View Article and Find Full Text PDFObjective: Federated research networks, like Evolve to Next-Gen Accrual of patients to Clinical Trials (ENACT), aim to facilitate medical research by exchanging electronic health record (EHR) data. However, poor data quality can hinder this goal. While networks typically set guidelines and standards to address this problem, we developed an organically evolving, data-centric method using patient counts to identify data quality issues, applicable even to sites not yet in the network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!