Background: Approaches to auricular reconstruction have shown improved outcome when a basic fibroblast growth factor (bFGF) slow-release system and fibrin spraying are combined with biodegradable polymers. More complex, three-dimensional structures, such as those that replicate the human auricle, are often lost because of biodegradation of the synthetic scaffold.

Methods: To improve the mechanical strength of regenerated cartilage, the authors grafted canine autologous chondrocytes after seeding onto scaffolds made of a complex of polyglycolic acid and polypropylene, incorporating a slow-release bFGF system with a fibrin spray coating.

Results: Five weeks after grafting, thicker cartilage with increased bending stress was obtained with the slow-release bFGF. In a three-polyglycolic acid-layer construct sandwiched around polypropylene, simulating a three-dimensional auricular structure, greater cartilage regeneration and angiogenesis were found around the implant. Sox5-positive cells were identified, indicative of maturation of neocartilage with chondroblast proliferation.

Conclusion: These results support the usefulness of combining absorbable and nonabsorbable materials (polyglycolic acid and polypropylene) in composite scaffolds for autologous cartilage regeneration in a large-animal autograft model.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0b013e31827c6dd8DOI Listing

Publication Analysis

Top Keywords

cartilage regeneration
12
composite scaffolds
8
regeneration large-animal
8
large-animal autograft
8
autograft model
8
system fibrin
8
polyglycolic acid
8
acid polypropylene
8
slow-release bfgf
8
cartilage
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!