Background And Aim: The relationship between hyperlipidemia and blood and plasma viscosity is not completely clear. While increasing viscosity is often reported with increasing blood lipids, lipid-lowering treatments are often unable to normalize the viscosity values. Aim of this study is to try to clarify the relationship between blood lipids and viscosity.
Methods And Results: Apparently healthy subjects were enrolled (n = 410). Smokers, diabetics, obese, and hypertriglyceridemic (above 400 mg/dl) were excluded. Blood (at shear rate 225/s) and plasma viscosity were measured at 37°C. Erythrocyte rigidity (Tk) was calculated according to Dintenfass. Blood lipids and glucose were measured by routine methods. Hyperlipidemic subjects (n = 315) had higher values of plasma viscosity (1.44 ± 0.13 vs. 1.40 ± 0.12 cP, p = 0.007), and blood viscosity (4.51 ± 0.54 vs. 4.35 ± 0.55 cP, p = 0.013), compared to normolipidemic subjects (n = 95). In simple correlation analysis, plasma viscosity was directly associated with LDL cholesterol, and inversely with Tk and HDL cholesterol. In multiple regression analysis the association with LDL and HDL was strengthened, though these two variables as a whole accounted for only 5% (adjusted R2) of the variability of plasma viscosity. Blood viscosity was significantly associated with haematocrit, plasma viscosity, Tk and all considered variables but age in simple correlation analysis, but only with haematocrit, plasma viscosity and Tk in multiple regression analysis.
Conclusions: LDL cholesterol and HDL cholesterol influence plasma viscosity, but not blood viscosity. Triglycerides up to values of 400 mg/dl do not seem to have important effects, at least in apparently healthy subjects and at the shear rates used in the present study. The contribution of LDL and HDL cholesterol to plasma viscosity seems however quite limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/CH-131705 | DOI Listing |
J Chem Phys
January 2025
Moscow Center for Advanced Studies, Moscow, Russia.
The properties of the hydrogen fluid at high pressures are still of interest to the scientific community. The experimentally unreachable dynamical properties could provide new insights into this field. In 2020 [Cheng et al.
View Article and Find Full Text PDFRev Int Androl
December 2024
Department of Biophysics, University of Health Sciences, Hamidiye Faculty of Medicine, 34668 İstanbul, Türkiye.
Background: We aimed to contribute to the literature by exploring the possible relationship of PV with erectile dysfunction (ED), as in atherosclerosis-based vascular diseases.
Methods: Between October 2021 and December 2022, 99 patients who applied to the urology polyclinic with a complaint of ED were included in the study (Group 1). Fifty-two patients who applied with a complaint other than ED constituted the control group (Group 2).
J Thromb Haemost
December 2024
Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
Background: Therapeutic plasma exchange (TPE) is the primary intervention for treating symptomatic hyperviscosity from hypergammaglobulinemia, yet its efficacy for treating hyperviscosity related to hyperfibrinogenemia is unclear.
Objective: Define the safety and efficacy of TPE for critically ill COVID-19 patients with elevated blood viscosity from hyperfibrinogenemia.
Method: A prospective, randomized controlled trial in critically ill COVID-19 patients at a single US healthcare system.
Exp Gerontol
January 2025
School of Kinesiology and Leisure, University of Moncton, Moncton, Canada.
Objective: This study aims to explore the effects of high-intensity interval training (HIIT) on plasma volume (PV) variations in obese women, with a focus on understanding how menopausal status and age influence these changes.
Methods: We enrolled fifty-nine obese women (perimenopausal and postmenopausal), aged approximately 56.6 years in a six-week HIIT program.
Phys Rev E
November 2024
Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy and Institute of Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The shear viscosity is a fundamental transport property of matter. Here we derive a general theory of the viscosity of gases based on the relativistic Langevin equation (deduced from a relativistic Lagrangian) and nonaffine linear response theory. The proposed relativistic theory is able to recover the viscosity of nonrelativistic classical gases, with all its key dependencies on mass, temperature, particle diameter, and Boltzmann constant, in the limit of Lorentz factor γ=1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!