Participation of connexin 40 (Cx40) in the regulation of renin secretion and in the tubuloglomerular feedback (TGF) component of renal autoregulation suggests that gap junctional coupling through Cx40 contributes to the function of the juxtaglomerular apparatus. In the present experiments, we determined the effect of targeted Cx40 deletion in C57BL/6 and FVB mice on TGF responsiveness. In C57BL/6 mice, stop-flow pressure (PSF) fell from 40.3 ± 2 to 34.5 ± 2 mmHg in wild-type (WT) and from 31 ± 1.06 to 26.6 ± 0.98 mmHg in Cx40-/- mice. PSF changes of 5.85 ± 0.67 mmHg in WT and of 4.3 ± 0.55 mmHg in Cx40-/- mice were not significantly different (P = 0.08). In FVB mice, PSF fell from 37.4 ± 1.5 to 31.6 ± 1.5 mmHg in WT and from 28.1 ± 1.6 to 25.4 ± 1.7 mmHg in Cx40-/-, with mean TGF responses being significantly greater in WT than Cx40-/- (5.5 ± 0.55 vs. 2.7 ± 0.84 mmHg; P = 0.002). In both genetic backgrounds, PSF values were significantly lower in Cx40-/- than WT mice at all flow rates. Arterial blood pressure in the animals prepared for micropuncture was not different between WT and Cx40-/- mice. We conclude that the TGF response magnitude in superficial cortical nephrons is reduced by 30-50% in mice without Cx40, but that with the exception of a small number of nephrons, residual TGF activity is maintained. Thus gap junctional coupling appears to modulate TGF, perhaps by determining the kinetics of signal transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651628 | PMC |
http://dx.doi.org/10.1152/ajprenal.00721.2012 | DOI Listing |
Elife
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .
View Article and Find Full Text PDFApoptosis
December 2024
Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, 430060, Hubei, China.
Int Immunopharmacol
December 2024
Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China. Electronic address:
Background: Sepsis, a systemic inflammatory condition, is a leading cause of mortality due to cardiovascular injury. Sepsis and cellular senescence are closely related, yet the specific mechanisms are still unclear. This study aims to identify a novel therapeutic target for mitigating sepsis-induced myocardial injury.
View Article and Find Full Text PDFBiomolecules
September 2024
Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia.
J Mol Cell Cardiol
October 2024
Aix-Marseille Université, CNRS IBDM UMR7288, Marseille, France.
Revascularization of ischemic myocardium following cardiac damage is an important step in cardiac regeneration. However, the mechanism of arteriogenesis has not been well described during cardiac regeneration. Here we investigated coronary artery remodeling and collateral growth during cardiac regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!