A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The prospect of selective recognition of nerve agents with modular basket-like hosts. A structure-activity study of the entrapment of a series of organophosphonates in aqueous media. | LitMetric

We designed, prepared, and characterized three cup-shaped cavitands 1-3 for trapping organophosphonates (O═PR(OR')2, 118-197 Å(3)) whose shape and size correspond to G-type chemical warfare agents (132-186 Å(3)). With the assistance of computational (molecular dynamics) and experimental ((1)H NMR spectroscopy) methods, we found that host [1-H3](3+) orients its protonated histamine residues at the rim outside the cavity, in bulk water. In this unfolded form, the cavitand traps a series of organophosphonates 5-13 (K(app) = 87 ± 1 to 321 ± 6 M(-1) at 298.0 K), thereby placing the P-CH3 functional group in the inner space of the host. A comparison of experimental and computed (1)H NMR chemical shifts of both hosts and guests allowed us to derive structure-activity relationships and deduce that, upon the complexation, the more sizable P-OR functional groups in guests drive organophosphonates to the northern portion of the basket [1-H3](3+). This, in turn, causes a displacement of the guest's P-CH3 group and a contraction of the cup-shaped scaffold. The proposed induced-fit model of the recognition is important for turning these modular hosts into useful receptors capable of a selective detection/degradation of organophosphorus nerve agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp401841wDOI Listing

Publication Analysis

Top Keywords

nerve agents
8
series organophosphonates
8
prospect selective
4
selective recognition
4
recognition nerve
4
agents modular
4
modular basket-like
4
basket-like hosts
4
hosts structure-activity
4
structure-activity study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!