Purposes: To determine whether the deregulation of genes relevant for normal thymus development can contribute to the biology of thymic epithelial tumors (TET).
Experimental Design: Using array comparative genomic hybridization, we evaluated the copy number aberrations of genes regulating thymus development. The expression of genes most commonly involved in copy number aberrations was evaluated by immunohistochemistry and correlated with patients' outcome. Correlation between FOXC1 copy number loss and gene expression was determined in a confirmation cohort. Cell lines were used to test the role of FOXC1 in tumors.
Results: Among 31 thymus development-related genes, PBX1 copy number gain and FOXC1 copy number loss were presented in 43.0% and 39.5% of the tumors, respectively. Immunohistochemistry on a series of 132 TETs, including those evaluated by comparative genomic hybridization, revealed a correlation between protein expression and copy number status only for FOXC1 but not for PBX1. Patients with FOXC1-negative tumors had a shorter time to progression and a trend for a shorter disease-related survival. The correlation between FOXC1 copy number loss and mRNA expression was confirmed in a separate cohort of 27 TETs. Ectopic FOXC1 expression attenuated anchorage-independent cell growth and cell migration in vitro.
Conclusion: Our data support a tumor suppressor role of FOXC1 in TETs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630263 | PMC |
http://dx.doi.org/10.1158/1078-0432.CCR-12-3260 | DOI Listing |
J Med Case Rep
January 2025
Department of Orthopaedics, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background: Congenital insensitivity to pain with anhidrosis is a rare but devastating hereditary disease. Congenital insensitivity to pain with anhidrosis is caused by a mutation in the neurotrophic receptor tyrosine kinase 1 gene (NRTK1). The condition is characterized by multiple injuries, recurrent infections, and mental retardation.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Forestry, Southwest Forestry University, Kunming, Yunnan, 650224, China.
Background: Phaius Lour. (Collabieae, Orchidaceae) is a small genus consisting of about 45 species, with highly ornamental and medicinal values. However, the phylogenetic relationship of Phaius among Calanthe s.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Vulvar cancer is a rare gynaecological disease that can be caused by infection with human papillomavirus (HPV). The mutational frequencies and landscape for HPV-associated and HPV-independent vulvar tumor development are supposedly two distinctly different pathways and more detailed knowledge on target biological mechanisms for individualized future treatments is needed. The study included formalin-fixed paraffin-embedded (FFPE) samples from 32 cancer patients (16 HPV-negative and 16 HPV-associated), treated in Örebro, Sweden from 1988 to 2008.
View Article and Find Full Text PDFCell Genom
January 2025
Department of Genetics, Yale School of Medicine, New Haven, CT, USA. Electronic address:
Salivary and pancreatic amylase are encoded by AMY1 and AMY2, respectively, which are located within a single genomic locus that has undergone substantial structural variation, resulting in varying gene copy numbers across species. Using optical genome mapping and long-read sequencing, Yilmaz, Karageorgiou, Kim, et al. achieved nucleotide-level resolution of this locus across different human populations, offering new insights into how copy number variation contributes to human adaptation.
View Article and Find Full Text PDFJCO Precis Oncol
January 2025
Sarcoma Translational Research Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!