Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with "B" genome are more tolerant to abiotic stresses than those solely based on "A" genome. In particular, bananas with "ABB" genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580962PMC
http://dx.doi.org/10.3389/fphys.2013.00009DOI Listing

Publication Analysis

Top Keywords

drought
8
drought resistance
8
abiotic stresses
8
genomic backgrounds
8
bunch yield
8
phenotyping bananas
4
bananas drought
4
resistance drought
4
drought emerged
4
emerged major
4

Similar Publications

Overexpressing OsNF-YB12 elevated the content of jasmonic acid and impaired drought tolerance in rice.

Plant Sci

January 2025

Shanghai Agrobiological Gene Center, Shanghai, 201106 China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai, 201106, China. Electronic address:

Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.

View Article and Find Full Text PDF

This study investigates the spatio-temporal consistency of different MMDI formulations and their role in meteorological drought characterization uncertainty under historic and future climates using ERA5 reanalysis, and outputs from eight Coupled Model Intercomparison Project Phase 6 models, respectively, across different climate zones and shared socioeconomic pathways (SSP) in the Indian subcontinent. Six MMDI formulations namely the Standardized Precipitation Evaporation Index (SPEI), Reconnaissance Drought Index (RDI), and self-calibrated Palmer Drought Severity Index (scPDSI), Standardized Palmer Drought Index (SPDI), Standardized Moisture Anomaly Index (SZI) and Supply Demand Drought Index (SDDI) are used. A suite of analysis including agreement mapping, category difference analysis and uncertainty contribution analysis using global sensitivity analysis (GSA) are employed to quantify the consistency of MMDIs and uncertainty in drought characterization due to the MMDI formulation.

View Article and Find Full Text PDF

Rheum tanguticum, an endemic species from the Qinghai-Xizang Plateau, is a significant perennial and medicinal plant recognized for its robust resistance to abiotic stresses, including drought, cold, and salinity. To advance the understanding of stress-response mechanisms in R. tanguticum, this study aimed to establish a reliable set of housekeeping genes as references for normalizing RT-qPCR gene expression analyses.

View Article and Find Full Text PDF

Rootstocks and drought stress impact the composition and functionality of grapevine rhizosphere bacterial microbiota.

Microbiol Res

January 2025

Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Gobierno de la Rioja - Universidad de La Rioja, Logroño 26007, Spain. Electronic address:

The microbiota, a component of the plant holobiont, plays an active role in the response to biotic and abiotic stresses. Nowadays, with recurrent drought and global warming, a growing challenge in viticulture is being addressed by different practices, including the use of adapted rootstocks. However, the relationships between these practices, abiotic stress and the composition and functions of the rhizosphere microbiota remain to be deciphered.

View Article and Find Full Text PDF

Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!