Greater efficiency of photosynthetic carbon fixation due to single amino-acid substitution.

Nat Commun

Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University, Universitaetsstr. 1, 40225 Düsseldorf, Germany.

Published: June 2013

The C4-photosynthetic carbon cycle is an elaborated addition to the classical C3-photosynthetic pathway, which improves solar conversion efficiency. The key enzyme in this pathway, phosphoenolpyruvate carboxylase, has evolved from an ancestral non-photosynthetic C3 phosphoenolpyruvate carboxylase. During evolution, C4 phosphoenolpyruvate carboxylase has increased its kinetic efficiency and reduced its sensitivity towards the feedback inhibitors malate and aspartate. An open question is the molecular basis of the shift in inhibitor tolerance. Here we show that a single-point mutation is sufficient to account for the drastic differences between the inhibitor tolerances of C3 and C4 phosphoenolpyruvate carboxylases. We solved high-resolution X-ray crystal structures of a C3 phosphoenolpyruvate carboxylase and a closely related C4 phosphoenolpyruvate carboxylase. The comparison of both structures revealed that Arg884 supports tight inhibitor binding in the C3-type enzyme. In the C4 phosphoenolpyruvate carboxylase isoform, this arginine is replaced by glycine. The substitution reduces inhibitor affinity and enables the enzyme to participate in the C4 photosynthesis pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586729PMC
http://dx.doi.org/10.1038/ncomms2504DOI Listing

Publication Analysis

Top Keywords

phosphoenolpyruvate carboxylase
24
phosphoenolpyruvate
7
carboxylase
6
greater efficiency
4
efficiency photosynthetic
4
photosynthetic carbon
4
carbon fixation
4
fixation single
4
single amino-acid
4
amino-acid substitution
4

Similar Publications

The genus Flaveria has been studied extensively as a model for the evolution of C photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species.

View Article and Find Full Text PDF

Metabolic Engineering of for Efficient Production of Ectoine.

J Agric Food Chem

December 2024

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .

View Article and Find Full Text PDF

Agroforestry intercropping is an effective way to optimize land use and ensure food security. However, the physiological mechanism by which the shading of dominant plants inhibits the yield of non-dominant plants in this mode remains to be investigated. A two-year location experiment of walnut-winter wheat intercrop combined with exogenous 6-benzyladenine (6-BA, the first synthetic cytokinin) treatment was conducted to reveal the mechanism of 6-BA in inhibiting wheat growth and yield formation under shade stress by measuring the photosynthetic characteristics, antioxidant capacity, hormone homeostasis of wheat flag leaves and yield.

View Article and Find Full Text PDF

Chronic heat stress is capable of reducing the growth performance, causing damage to the liver structure, and altering the liver glucose metabolism and lipid metabolism in largemouth bass (Micropterus salmoides L.).

Fish Physiol Biochem

February 2025

Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.

High temperatures cause abnormal energy metabolism and inhibit the growth of fish in aquaculture. However, the mechanism of energy metabolism under chronic heat stress is still unknown. In this study, largemouth bass (Micropterus salmoides, LMB) was treated with 25℃, 29℃, and 33℃ for 8 weeks.

View Article and Find Full Text PDF

The induction of polyamines metabolism pathway and membrane stability with silicon alleviate the vanadium toxicity in pepper plants.

J Hazard Mater

November 2024

National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China. Electronic address:

The vanadium (V) toxicity predominantly is the primary limitation in restraining pepper growth. The silicon (Si) in pepper plants induced the transcript level of the polyamines metabolism pathway genes, including the arginase (CbARG), ornithine decarboxylase (CbODC), arginine decarboxylase (CbADC), N-carbamoylputrescine amidase (CbNCA), Spermidine synthase (CbSPDS), copper binding diamine oxidase (CbCuAO) to overcome the V toxicity. The polyamines, including the Spm, Spd, and Put, induced with Si about 41.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!