A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Collapsin response mediator protein 3 deacetylates histone H4 to mediate nuclear condensation and neuronal death. | LitMetric

Collapsin response mediator protein 3 deacetylates histone H4 to mediate nuclear condensation and neuronal death.

Sci Rep

Experimental NeuroTherapeutics Laboratory, NRC Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, Ontario, Canada.

Published: August 2013

CRMP proteins play critical regulatory roles during semaphorin-mediated neurite outgrowth, neuronal differentiation and death. Albeit having a high degree of structure and sequence resemblance to that of liver dihydropyrimidinase, purified rodent brain CRMPs do not hydrolyze dihydropyrimidinase substrates. Here we found that mouse CRMP3 has robust histone H4 deacetylase activity. During excitotoxicity-induced mouse neuronal death, calpain-cleaved, N-terminally truncated CRMP3 undergoes nuclear translocation to cause nuclear condensation through deacetylation of histone H4. CRMP3-mediated deacetylation of H4 leads to de-repression of the E2F1 gene transcription and E2F1-dependent neuronal death. These studies revealed a novel mechanism of CRMP3 in neuronal death. Together with previous well established bodies of literature that inhibition of histone deacetylase activity provides neuroprotection, we envisage that inhibition of CRMP3 may represent a novel therapeutic approach towards excitotoxicity-induced neuronal death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583001PMC
http://dx.doi.org/10.1038/srep01350DOI Listing

Publication Analysis

Top Keywords

neuronal death
20
nuclear condensation
8
histone deacetylase
8
deacetylase activity
8
neuronal
6
death
6
collapsin response
4
response mediator
4
mediator protein
4
protein deacetylates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!