Massive screening of copy number population-scale variation in Bos taurus genome.

BMC Genomics

Department for innovation in biological, agro-food and forest systems, University of Tuscia, via de Lellis, Viterbo 01100, Italy.

Published: February 2013

Background: Copy number variations (CNVs) represent a significant source of genomic structural variation. Their length ranges from approximately one hundred to millions of base pair. Genome-wide screenings have clarified that CNVs are a ubiquitous phenomenon affecting essentially the whole genome. Although Bos taurus is one of the most important domestic animal species worldwide and one of the most studied ruminant models for metabolism, reproduction, and disease, relatively few studies have investigated CNVs in cattle and little is known about how CNVs contribute to normal phenotypic variation and to disease susceptibility in this species, compared to humans and other model organisms.

Results: Here we characterize and compare CNV profiles in 2654 animals from five dairy and beef Bos taurus breeds, using the Illumina BovineSNP50 genotyping array (54001 SNP probes). In this study we applied the two most commonly used algorithms for CNV discovery (QuantiSNP and PennCNV) and identified 4830 unique candidate CNVs belonging to 326 regions. These regions overlap with 5789 known genes, 76.7% of which are significantly co-localized with segmental duplications (SD).

Conclusions: This large scale screening significantly contributes to the enrichment of the Bos taurus CNV map, demonstrates the ubiquity, great diversity and complexity of this type of genomic variation and sets the basis for testing the influence of CNVs on Bos taurus complex functional and production traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618309PMC
http://dx.doi.org/10.1186/1471-2164-14-124DOI Listing

Publication Analysis

Top Keywords

bos taurus
20
copy number
8
cnvs
6
bos
5
taurus
5
massive screening
4
screening copy
4
number population-scale
4
variation
4
population-scale variation
4

Similar Publications

Molecular Characterization of Bovine in Equine Sarcoids in Egypt.

Vet Med Int

January 2025

Veterinary Population Medicine Department and Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA.

Bovine papillomaviruses (BPVs) commonly cause sarcoids in equines worldwide. Equine sarcoids (ESs) reduce the working ability of draft animals and produce untoward cosmetic changes in racing and dancing equine. In this study, nine horses and 16 donkeys with sarcoids were presented to Zagazig University Veterinary Clinic, Zagazig, Egypt.

View Article and Find Full Text PDF

Prevalence of , and spp. in diarrhoeic suckling calves from north-western Spain and analysis of their interactions.

Int J Vet Sci Med

January 2025

Galicia (Grupo INVESAGA). Departamento de Patología Animal. Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain, Investigación en Sanidad Animal.

Although , and some species are frequently involved in neonatal calf diarrhoea (NCD), detailed studies on their interactions are scarce. Therefore, a cross-sectional study including faecal samples from 404 diarrhoeic calves aged 0-30 days was performed. oocysts and cysts were detected by immunofluorescence antibody test and positive samples were molecularly characterized.

View Article and Find Full Text PDF

Between 21 September and 6 December 2024, 657 highly pathogenic avian influenza (HPAI) A(H5N1) and A(H5N5) virus detections were reported in domestic (341) and wild (316) birds across 27 countries in Europe. Many HPAI outbreaks in domestic birds were clustered in areas with high poultry density and characterised by secondary farm-to-farm spread. Waterfowl, particularly the mute swan, were primarily affected during this reporting period, with HPAI virus detections focused on south-eastern Europe.

View Article and Find Full Text PDF

A study was conducted to assess growth performance, methane (CH) emissions, and feeding behavior of feedlot steers consuming backgrounding and finishing diets with an essential oil blend (EO), monensin (Mon), and their combination (EO + Mon). The study was structured as a 2 × 2 factorial, with two feed additive treatments (Control, EO) and two monensin treatments (no Monensin, Monensin). One hundred Angus × steers were evenly distributed across each treatment into four pens, and each dietary phase consisted of four, 28-d periods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!