Objectives: This study aims to evaluate the value of quantitative magnetic resonance imaging in the assessment of bone trabeculae in osteoporosis by comparing the results with dual-energy X-ray (DXA) absorptiometry.

Patients And Methods: The study consisted of 85 postmenopausal women (mean age 57.2 years; range 43 to 83 years) underwent both DXA absorptiometry and lumbar quantitative magnetic resonance imaging. T2 and T2* values were calculated by magnetic resonance imaging and the results were compared with bone mineral density.

Results: According to bone mineral density t-scores; there were 32 normal, 30 osteopenic, and 23 osteoporotic patients. T2 values of L1- L4 were different in normal with osteoporotic, and the osteopenic with osteoporotic groups. There were increased T2 values with reducing t-scores. Comparing the normal and osteopenic groups, no statistical difference was found in T2 measurements of lumbar vertebrae, except L4. T2* values of L1-L4 vertebrae were not statistically different between the study groups.

Conclusion: T2 measurements of lumbar vertebra on quantitative magnetic resonance imaging may be useful in evaluation of bone trabeculae in osteoporosis, and may also be helpful in differentiation of osteoporotic from normal, and osteopenic from osteoporotic patients.

Download full-text PDF

Source
http://dx.doi.org/10.5606/ehc.2013.02DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
20
resonance imaging
20
quantitative magnetic
16
normal osteopenic
12
osteopenic osteoporotic
12
bone trabeculae
8
trabeculae osteoporosis
8
t2* values
8
bone mineral
8
osteoporotic patients
8

Similar Publications

Rationale And Objectives: Alzheimer's disease (AD) is the most common pathogenesis of dementia, and mild cognitive impairment (MCI) is considered as the intermediate stage from normal elderly to AD. Early detection of MCI is an essential step for the timely intervention of AD to slow the progression of this disease. Different form previous studies in the whole-brain spontaneous activities, this research aimed to explore the low-frequency amplitude spectrum activities of patients with MCI within the default mode network (DMN), which has been involved in the process of maintaining normal cognitive function.

View Article and Find Full Text PDF

Sex Differences in the Striatal Contributions to Longitudinal Fine Motor Development in Autistic Children.

Biol Psychiatry

January 2025

MIND Institute and Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.

Background: Fine motor challenges are prevalent in autistic populations. However, little is known about their neurobiological underpinnings or how their related neural mechanisms are influenced by sex. The dorsal striatum, comprised of the caudate nucleus and putamen, is associated with motor learning and control and may hold critical information.

View Article and Find Full Text PDF

Understanding lipid digestion is crucial for promoting human health. Traditional methods for studying lipolysis face challenges in sample representativeness and pre-treatment, and cannot measure real-time lipolysis in vivo. Thus, non-invasive techniques like magnetic resonance imaging (MRI) need to be developed.

View Article and Find Full Text PDF

Identification and structural characterization of glucosylceramides in Holothuria (Halodeima) grisea: Insights from TLC and NMR techniques.

Carbohydr Res

January 2025

Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81531-990, Curitiba, PR, Brazil. Electronic address:

Sea cucumbers are widely used in oriental cuisine due to their medicinal properties. Antioxidant, antifungal, antiviral, anticancer and neuroprotective activities have already been identified in several species and in different tissues. Among the class of compounds with biological activity are cerebrosides, which have important functions for the proper functioning of cells, especially neuronal cells.

View Article and Find Full Text PDF

Exploring redox-active electrolytes to boost energy density of carbon-based supercapacitors.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:

To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!