Aquaporin-4 expression in post-traumatic syringomyelia.

J Neurotrauma

The Australian School of Advanced Medicine, Macquarie University, Sydney, New South Wales, Australia.

Published: August 2013

Aquaporin-4 (AQP4) is an astroglial water channel protein that plays an important role in the transmembrane movement of water within the central nervous system. AQP4 has been implicated in numerous pathological conditions involving abnormal fluid accumulation, including spinal cord edema following traumatic injury. AQP4 has not been studied in post-traumatic syringomyelia, a condition that cannot be completely explained by current theories of cerebrospinal fluid dynamics. Alterations of AQP4 expression or function may contribute to the fluid imbalance leading to syrinx formation or enlargement. The aim of this study was to examine AQP4 expression levels and distribution in an animal model of post-traumatic syringomyelia. Immunofluorescence and western blotting were used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression in an excitotoxic amino acid/arachnoiditis model of post-traumatic syringomyelia in Sprague-Dawley rats. At all time-points, GFAP-positive astrocytes were observed in tissue surrounding syrinx cavities, although western blot analysis demonstrated an overall decrease in GFAP expression, except at the latest stage investigated. AQP4 expression was significantly higher at the level of syrinx at three and six weeks following the initial syrinx induction surgery. Significant increases in AQP4 expression also were observed in the upper cervical cord, rostral to the syrinx except in the acute stage of the condition at the three-day time-point. Immunostaining showed that AQP4 was expressed around all syrinx cavities, most notably adjacent to a mature syrinx (six- and 12-week time-point). This suggests a relationship between AQP4 and fluid accumulation in post-traumatic syringomyelia. However, whether this is a causal relationship or occurs in response to an increase in fluid needs to be established.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3741421PMC
http://dx.doi.org/10.1089/neu.2012.2614DOI Listing

Publication Analysis

Top Keywords

post-traumatic syringomyelia
20
aqp4 expression
16
aqp4
10
fluid accumulation
8
model post-traumatic
8
gfap expression
8
syrinx cavities
8
syrinx
7
expression
6
post-traumatic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!