Ambipolar surface conduction in ternary topological insulator Bi₂(Te₁-xSex)₃ nanoribbons.

ACS Nano

Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, People's Republic of China.

Published: March 2013

We report the composition- and gate voltage-induced tuning of transport properties in chemically synthesized Bi2(Te1-xSex)3 nanoribbons. It is found that increasing Se concentration effectively suppresses the bulk carrier transport and induces semiconducting behavior in the temperature-dependent resistance of Bi2(Te1-xSex)3 nanoribbons when x is greater than ∼10%. In Bi2(Te1-xSex)3 nanoribbons with x ≈ 20%, gate voltage enables ambipolar modulation of resistance (or conductance) in samples with thicknesses around or larger than 100 nm, indicating significantly enhanced contribution in transport from the gapless surface states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn304684bDOI Listing

Publication Analysis

Top Keywords

bi2te1-xsex3 nanoribbons
12
ambipolar surface
4
surface conduction
4
conduction ternary
4
ternary topological
4
topological insulator
4
insulator bi₂te₁-xsex₃
4
nanoribbons
4
bi₂te₁-xsex₃ nanoribbons
4
nanoribbons report
4

Similar Publications

Geometries and electronic structures of planar and quasi-planar boron clusters resemble those of aromatic hydrocarbons, providing opportunities for designing novel nonlinear optical materials. However, the nonlinear optical properties, optical-response mechanisms, and optimal optical-response geometries of boron clusters remain unclear. Accordingly, this study addresses these uncertainties.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Laser ablation propulsion is an important micro-propulsion system for microsatellites. Polymers with carbon added and carbon-based nanomaterial have been demonstrated as propellants with high impulse coupling coefficient (C). Among them, the carbon nanotube film exhibits a low ablation threshold fluence of 25 mJ/cm, which shows its potential for propulsion under low laser fluence.

View Article and Find Full Text PDF

Putrescine is a kind of physical diamine that is closely related to food deterioration and food quality safety. This study employs a novel fiber optic biosensor based on S-tapered and waist extension techniques, as well as localized surface plasmon resonance (LSPR), to detect putrescine accurately. The gold nanoparticles (AuNPs) are fixed on the fiber to excite LSPR.

View Article and Find Full Text PDF

Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!