Purpose: To investigate the spatial, temporal, and temperature resolution of a segmented gradient echo echo-planar imaging (EPI) technique as applied to proton resonance frequency (PRF) shift thermometry at 3 T in the human prostate gland, and to determine appropriate sequence parameters for magnetic resonance imaging (MRI)-controlled transurethral ultrasound thermal therapy.

Materials And Methods: Eleven healthy volunteers (age range 23-58) were scanned at 3 T with a 16-channel torso coil to study the behavior of a gradient echo EPI thermometry sequence. The temperature stability and geometric distortion were assessed for 11 different parameter sets. In a further five volunteers, the prostate T2* was measured.

Results: For all scan parameters investigated, the temperature standard deviation within the prostate was less than 1°C, while the distortion was less than 1 mm. Temperature stability was best with higher TE values (up to 25 msec), larger voxel sizes and lower EPI factors, but this had to be balanced against requirements for good spatial and temporal resolution. Prostate T2* values ranged from 30-50 msec.

Conclusion: A good balance between temperature stability and temporal/spatial resolution is obtained with TE = 15 msec, voxel size = 1.14 mm, and EPI factor = 9, resulting in a dynamic scan time of 7.2 seconds for the nine slices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193924PMC
http://dx.doi.org/10.1002/jmri.24063DOI Listing

Publication Analysis

Top Keywords

temperature stability
12
thermometry human
8
human prostate
8
prostate gland
8
transurethral ultrasound
8
spatial temporal
8
gradient echo
8
prostate t2*
8
prostate
5
temperature
5

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Glassphalt suffers from performance defects, especially against moisture damage and fatigue cracking. In this research, the performance of glassphalt modified with CF has been evaluated against moisture damage, fatigue cracking and rutting. Based on this, Modified Lottman, Wilhelmy Plate (WP), Indirect Tensile Stiffness Modulus (ITSM), Indirect Tensile Fatigue (ITF), and Repeated Load Axial (RLA) tests have been performed on glassphalt modified with CF.

View Article and Find Full Text PDF

RP-HPLC technique was developed and optimized for simultaneous identification and estimation of nirmatrelvir (NIR) and ritonavir (RIT) in their new copackaged tablet. Stability of nirmatrelvir (NIR) was studied after exposure to different five stress conditions; alkali, acid, heat, photo and oxidation degradation. The chromatographic separation was achieved using VDSpher PUR 100 ODS (4.

View Article and Find Full Text PDF

Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!