A streptomycete that had the ability to avidly sequester iron via siderophores was previously isolated from environmental soil samples. The chelating agent expressed by this organism is confirmed by HPLC as desferrioxamine E. Although the traditional chromo azuerol sulphate (CAS) assay for detection of siderophores is based upon the chelation of iron we were interested to examine the relationship of these iron-capturing molecules with other ions. Consequently, a new approach was employed that enabled the assessment of the affinity of the siderophore moieties for other ions by adapting the CAS assay. The present study reveals that the isolate produced a siderophore that was capable of sequestering a range of ions including Mn, Co, Cd, Ni, Al, Li, Cu, Zn and Mg. On the basis of the assay described it would appear that the organism sequesters copper more readily than iron. This raises an age-old debate surrounding the replacement of copper as a fundamentally essential element with iron as a consequence of the evolution of the di-oxygen environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201200407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!