Molecular self-assembly at metal-electrolyte interfaces.

Int J Mol Sci

Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr, 12, D-53115 Bonn, Germany.

Published: February 2013

The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present and discuss results on the electrochemical deposition of viologen- and porphyrin molecules as well as their co-adsorption on chloride modified Cu(100) and Cu(111) single crystal electrode surfaces from aqueous acidic solutions. Using in situ techniques like cyclic voltametry and high resolution scanning tunneling microscopy, as well as ex-situ photoelectron spectroscopy data the highly ordered self-assembled organic layers are characterized with respect to their electrochemical behavior, lateral order and inner conformation as well as phase transitions thereof as a function of their redox-state and the symmetry of the substrate. As a result, detailed structure models are derived and are discussed in terms of the prevailing interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634441PMC
http://dx.doi.org/10.3390/ijms14034498DOI Listing

Publication Analysis

Top Keywords

molecular self-assembly
4
self-assembly metal-electrolyte
4
metal-electrolyte interfaces
4
interfaces self-assembly
4
self-assembly molecular
4
molecular layers
4
layers strategy
4
strategy modern
4
modern design
4
design functional
4

Similar Publications

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Gas-Releasing Polymer Tubesomes: Boosting Gas Delivery of Nanovehicles via Membrane Stretching.

Angew Chem Int Ed Engl

January 2025

Fudan University, Macromolecular Science, No.220, Handan Road, Yangpu District, 200433, Shanghai, CHINA.

Hydrogen sulfide (H2S), as a gasotransmitter, not only plays a vital role in mediating many cellular activities but also manifests exciting applications in clinical therapy. However, one main obstacle in using H2S as a gaseous therapeutic agent is to realize on-demand storage and delivery of gas, and thus, it is of great importance to develop H2S-donating vehicle platforms. Although a variety of polymer-based gas-releasing carriers have been designed, almost all the systems are limited to spherical structures.

View Article and Find Full Text PDF

Small molecules as nanomedicine carriers offer advantages in drug loading and preparation. Selecting effective small molecules for stable nanomedicines is challenging. This study used artificial intelligence (AI) to screen drug combinations for self-assembling nanomedicines, employing physiochemical parameters to predict formation via machine learning.

View Article and Find Full Text PDF

Hedgehog (Hh) morphogen governs embryonic development and tissue homeostasis through the Ci/Gli family transcription factors. Here we report that Hh induces phase separation of the fused (Fu)/Ulk family kinases to allosterically regulate Ci/Gli. We find that Hh-induced phosphorylation of Fu/Ulk3 promotes SUMOylation of their inverted phosphorylation-dependent SUMOylation motifs.

View Article and Find Full Text PDF

Fine-Tuning of the Sequential Self-Assembly of Entangled Polyhedra by Exploiting the Side-Chain Effect.

Chem Asian J

December 2024

Tokyo College, U-Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Mitsui Link Lab Kashiwanoha 1, FS CREATION, 6-6-2 Kashiwanoha, Kashiwa-shi, Chiba, 277-0882, Japan.

The control of the sequential self-assembly processes of highly entangled (AgL) (n=2,4,6,8) and AgL coordination polyhedra using side-chain effects was studied via the introduction of linear or branched side chains into the tripodal ligands. In addition to changes in the intermediate polyhedral species affording the multi- pathway process, disruption of the kinetic control of the sequential self-assembly was observed, thus demonstrating the utility of steric control for the construction of 3D-entangled molecular materials on the 5 nm scale with high molecular complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!