Mimicking and exploiting virus properties and physicochemical and physical characteristics holds promise to provide solutions to some of the world's most pressing challenges. The sheer range and types of viruses coupled with their intriguing properties potentially give endless opportunities for applications in virus-based technologies. Viruses have the ability to self- assemble into particles with discrete shape and size, specificity of symmetry, polyvalence, and stable properties under a wide range of temperature and pH conditions. Not surprisingly, with such a remarkable range of properties, viruses are proposed for use in biomaterials, vaccines, electronic materials, chemical tools, and molecular electronic containers. In order to utilize viruses in nanotechnology, they must be modified from their natural forms to impart new functions. This challenging process can be performed through several mechanisms including genetic modification of the viral genome and chemically attaching foreign or desired molecules to the virus particle reactive groups. The ability to modify a virus primarily depends upon the physiochemical and physical properties of the virus. In addition, the genetic or physiochemical modifications need to be performed without adversely affecting the virus native structure and virus function. Maize rayado fino virus (MRFV) coat proteins self-assemble in Escherichia coli producing stable and empty VLPs that are stabilized by protein-protein interactions and that can be used in virus-based technologies applications. VLPs produced in tobacco plants were examined as a scaffold on which a variety of peptides can be covalently displayed. Here, we describe the steps to 1) determine which of the solvent-accessible cysteines in a virus capsid are available for modification, and 2) bioconjugate peptides to the modified capsids. By using native or mutationally-inserted amino acid residues and standard coupling technologies, a wide variety of materials have been displayed on the surface of plant viruses such as, Brome mosaic virus, Carnation mottle virus, Cowpea chlorotic mottle virus, Tobacco mosaic virus, Turnip yellow mosaic virus, and MRFV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3601204 | PMC |
http://dx.doi.org/10.3791/50084 | DOI Listing |
Am J Trop Med Hyg
January 2025
Centro de Investigaciones Regionales "Dr. Hideyo Noguchi," Universidad Autónoma de Yucatán, Mérida, México.
The socioecological conditions of Mexican regions are conducive to the spread of vector-borne diseases. Although there are established treatment guidelines for dengue and rickettsiosis, diagnosis is complicated. The objective of this work was to identify epitopes of Rickettsia and dengue virus that could be used in serology screening against vector-borne diseases.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom.
Background: The literature is equivocal as to whether the predicted negative mental health impact of the COVID-19 pandemic came to fruition. Some quantitative studies report increased emotional problems and depression; others report improved mental health and well-being. Qualitative explorations reveal heterogeneity, with themes ranging from feelings of loss to growth and development.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
January 2025
Clinical Laboratory, The People's Hospital of Baoding, Baoding, China.
Many new circulating recombinant forms (CRFs) and unique recombinant forms (URFs) of human immunodeficiency virus type-1 (HIV-1) have been discovered in populations with multiple circulating HIV-1 genotypes. In this study, we report two novel URFs derived from two HIV-1-positive individuals in Hebei, China, who were infected through homosexual (BDD142) and heterosexual (BDD154) contact. Phylogenetic and recombinant analyses of the two NFLG revealed that they are second-generation recombinant strains originating from the CRF01_AE cluster 4/B and CRF01_AE cluster 5/B strains.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
Background: The relationships between pectoralis muscle parameters and outcomes in patients with coronavirus disease 2019 (COVID-19) remain uncertain.
Methods: We systematically searched PubMed, Embase, Web of Science and the Cochrane Library from 1 January 2019 to 1 May 2024 to identify non-overlapping studies evaluating pectoralis muscle-associated index on chest CT scan with clinical outcome in COVID-19 patients. Random-effects and fixed-effects meta-analyses were performed, and heterogeneity between studies was quantified using the I2 statistic.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!