Cisplatin is one of the most potent chemotherapeutic anticancer drugs, but it can produce side effects such as nephrotoxicity. Inflammatory cytokines, chemokines and adhesion molecules have important roles in the pathogenesis of cisplatin-induced nephrotoxicity. D-Ribose is a naturally occurring five-carbon monosaccharide that is found in all living cells, and has anti-inflammatory effects in renal ischemia/reperfusion injury. The purpose of this study was to determine the protective effects of D-ribose on cisplatin-induced nephrotoxicity. Forty-eight mice were randomly divided into four groups: control, cisplatin, cisplatin + ribose, and ribose. Mice were given cisplatin (20 mg/kg body weight, intraperitoneally) with or without D-ribose (400 mg/kg body weight, intraperitoneally, immediately after cisplatin injection). At 72 h after cisplatin injection, we measured serum and renal tumor necrosis factor (TNF)-α and renal monocyte chemoattractant protein (MCP)-1 concentrations by enzyme-linked immunosorbent assay; renal expression of intercellular adhesion molecule (ICAM)-1 mRNA by real-time polymerase chain reaction; serum blood urea nitrogen and creatinine; and histological changes. Cisplatin increased serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Treatment with D-ribose attenuated the increase in serum and renal TNF-α concentrations, renal MCP-1 concentration, and renal ICAM-1 mRNA expression. Consequently, cisplatin-induced renal dysfunction and renal tubular necrosis were attenuated by D-ribose treatment. This is believed to be the first time that protective effects of D-ribose on cisplatin-induced nephrotoxicity via inhibition of inflammatory reactions have been investigated. Thus, D-ribose may become a new therapeutic candidate for the treatment of cisplatin-induced nephrotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1620/tjem.229.195DOI Listing

Publication Analysis

Top Keywords

cisplatin-induced nephrotoxicity
20
renal
13
serum renal
12
icam-1 mrna
12
d-ribose
8
mice cisplatin
8
protective effects
8
effects d-ribose
8
d-ribose cisplatin-induced
8
mg/kg body
8

Similar Publications

Humic acid attenuates cisplatin-induced nephrotoxicity in rats.

Drug Chem Toxicol

January 2025

Department of Histology & Embryology, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey.

Cisplatin-induced nephrotoxicity, a major limitation of this chemotherapeutic agent, involves oxidative stress, inflammation, and apoptosis. This study investigated the potential renoprotective effects of humic acid in a rat model of cisplatin-induced nephrotoxicity. Forty-two male Wistar rats were assigned to six groups: control, humic acid, cisplatin, cisplatin + humic acid 10 mg/kg, cisplatin + humic acid 20 mg/kg, and cisplatin + humic acid 40 mg/kg.

View Article and Find Full Text PDF

The incidence rate and mortality rate of breast cancer remain high, and there is an urgent need for safe and effective drugs. The excellent biological activity of hesperidin (HE) is a potential drug for the treatment of breast cancer. In this study, silk fibroin peptides (SFP) were used as delivery carriers and HE loaded SFP nanofibers (SFP/HE NFs) was prepared.

View Article and Find Full Text PDF

Background: Cisplatin is an anti-cancer drug used to treat a plethora of solid tumors. However, it is associated with dose dependent nephrotoxicity limiting its use as anticancer agent.

Objective: The current study aimed to investigate the nephroprotective effect of native Lebanese Cannabis sativa in both in vitro and in vivo mice model of cisplatin-induced nephrotoxicity.

View Article and Find Full Text PDF

Purpose: The use of short hydration (SH) to prevent cisplatin-induced nephrotoxicity lacks substantive prospective evaluation. The aim of this study was to evaluate the safety and efficacy of SH, including those with head and neck cancer (HNC) who are at higher risks of mucositis that causes diminished oral intake.

Methods: This phase II randomized noncomparative trial included patients with cancer who were scheduled to receive high-dose cisplatin (≥60 mg/m) in combination with another chemotherapy or concurrently with radiotherapy.

View Article and Find Full Text PDF

Background: Cisplatin is widely used in clinical practice, but its nephrotoxicity severely limits its use. Previous studies have shown that cisplatin-induced acute kidney injury (AKI) is closely related to mitochondrial damage and that alleviating mitochondrial dysfunction can alleviate cisplatin-induced AKI. Methylcrotonyl‑CoA carboxylase 2 (MCCC2) is mainly located in mitochondria, where it catalyzes the catabolism of leucine and maintains mitochondrial function; however, the role of MCCC2 in cisplatin-induced renal injury has not yet been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!