The AvrPphB effector of Pseudomonas syringae is a papain-like protease that is injected into the host plant cell and cleaves specific kinases to disrupt immune signaling. Here, we used the unique substrate specificity of AvrPphB to generate a specific activity-based probe. This probe displays various AvrPphB isoforms in bacterial extracts, upon secretion and inside the host plant. We show that AvrPphB is secreted as a proprotease and that secretion requires the prodomain, but probably does not involve a pH-dependent unfolding mechanism. The prodomain removal is required for the ability of AvrPphB to trigger a hypersensitive cell death in resistant host plants, presumably since processing exposes a hidden acylation site required for subcellular targeting in the host cell. We detected two active isoforms of AvrPphB in planta, of which the major one localizes exclusively to membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2012.11.007 | DOI Listing |
Nat Commun
January 2025
Department of Biomedicine, University of Bergen, Bergen, Norway.
N-terminal acetylation is a highly abundant protein modification in eukaryotic cells. This modification is catalysed by N-terminal acetyltransferases acting co- or post-translationally. Here, we review the eukaryotic N-terminal acetylation machinery: the enzymes involved and their substrate specificities.
View Article and Find Full Text PDFT-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction.
View Article and Find Full Text PDFPhysiol Rev
January 2025
Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261.
The redox signaling network in mammals has garnered enormous interest and taken on major biological significance in recent years as the scope of NADPH oxidases (NOXs) as regulators of physiological signaling and cellular degeneration has grown exponentially. All NOX subtypes have in common the capacity to generate reactive oxygen species (ROS) superoxide anion (O) and/or hydrogen peroxide (HO). A baseline, normal level of ROS formation supports a wide range of processes under physiological conditions.
View Article and Find Full Text PDFAm J Pathol
January 2025
Division of Nephrology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA. Electronic address:
Cellular stress conditions, such as oxidative and endoplasmic reticulum (ER) stresses contribute to development of various kidney diseases. Oxidative stress is prompted by reactive oxygen species (ROS) accumulation and delicately mitigated by glutathione and thioredoxin (Trx) antioxidant systems. Initially identified as a Trx-binding partner, thioredoxin interacting protein (TXNIP) is significantly upregulated and activated by oxidative and ER stresses.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana, USA.
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!