Normal aging impairs the representation and integration (binding) of spatial and temporal context in episodic memory. We directly compare age differences in episodic memory in relation to processing spatial and temporal context. As part of the COGITO study, 101 younger and 103 older participants trained an object-location serial recall task for 100 sessions. Training exacerbated the recall deficit of older relative to younger adults. Younger adults improved in recall performance on both spatial and temporal dimensions. In contrast, older adults improved on the spatial dimension only. Individual differences in pretest performance and change were positively correlated across dimensions among younger adults but negatively related among older adults. We conclude that older adults are impaired at simultaneously processing spatial and temporal context and preferentially process spatial at the expense of temporal context.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0031489DOI Listing

Publication Analysis

Top Keywords

spatial temporal
16
temporal context
16
episodic memory
12
younger adults
12
older adults
12
processing spatial
8
adults improved
8
spatial
7
temporal
6
adults
6

Similar Publications

Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.

View Article and Find Full Text PDF

Re-arranging the Cis-regulatory Modules of Hox Complex in Drosophila via FLP-FRT and CRISPR/Cas9.

Methods Mol Biol

January 2025

Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD, USA.

FLP-FRT, a well-established technique for genome manipulation, and the revolutionary CRISPR/Cas9, known for its targeted indels, are combined in a novel approach. This unique method is applied to the Hox genes in the Drosophila melanogaster bithorax complex, which are closely located to the cis-regulatory modules that define their spatial-temporal regulation. The number and position of these genes are directly correlated to their expression pattern.

View Article and Find Full Text PDF

A master regulatory loop that activates genes in a temporally coordinated manner in muscle cells of ascidian embryos.

Development

January 2025

Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.

Ascidian larval muscle cells present a classic example of autonomous development. A regulatory mechanism for these cells has been extensively investigated, and the regulatory gene circuit has been documented from maternal factors to a muscle-specific gene. In the present study, we comprehensively identified genes expressed specifically in ascidian muscle cells, and found that all of them are under control of a positive regulatory loop of Tbx6-r.

View Article and Find Full Text PDF

Multimodal sleep staging network based on obstructive sleep apnea.

Front Comput Neurosci

December 2024

School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, China.

Background: Automatic sleep staging is essential for assessing sleep quality and diagnosing sleep disorders. While previous research has achieved high classification performance, most current sleep staging networks have only been validated in healthy populations, ignoring the impact of Obstructive Sleep Apnea (OSA) on sleep stage classification. In addition, it remains challenging to effectively improve the fine-grained detection of polysomnography (PSG) and capture multi-scale transitions between sleep stages.

View Article and Find Full Text PDF

Extreme weather events, including wildfires, are becoming more intense, frequent, and expansive due to climate change, thus increasing negative health outcomes. However, such effects can vary across space, time, and population subgroups, requiring methods that can handle multiple exposed units, account for time-varying confounding, and capture heterogeneous treatment effects. In this article, we proposed an approach based on staggered generalized synthetic control methods to study heterogeneous health effects, using the 2018 California wildfire season as a case study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!