Mesophilic anaerobic co-digestion of pulp and paper sludge and food waste for methane production in a fed-batch basis.

Environ Technol

Key Laboratory of Soil Environment and Waste Reuse in Agriculture of Guangdong High Education Institutions, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P.R. China.

Published: December 2012

Co-digestion of pulp and paper sludge (PPS) and food waste (FW) in a batch-fed digestion system was conducted on a laboratory scale. Three reactors named A1, A2, and A3 were tested. PPS and FW mixed at different mass ratios of 1:3, 1:1, and 3:1, respectively, were loaded in the reactors. Bioconversion at high efficiency was obtained in the system. The accumulative methane yield of each reactor was 144mLg(-1)VSfed (A1), 256 mL g(-1) VSfed (A2), and 123 mL g(-1)VSfed (A3). The soluble chemical oxygen demand (COD) removal efficiencies reached 73.2% (Al), 93.9% (A2), and 79.6% (A3). A pH in the range 5.8-8.4 was obtained in the three reactors without adjustment due to the high buffer capacity of the mixing feedstock. No toxicity inhibitions of volatile fatty acids and NH3-N occurred in reactor A2. This study showed that it was good for co-digestion of PPS and FW in a mass ratio of 1:1 for methane production, which resulted in higher methane yield, a greater buffer capacity, a higher organics removal efficiency, and a more stable process.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2012.673012DOI Listing

Publication Analysis

Top Keywords

co-digestion pulp
8
pulp paper
8
paper sludge
8
food waste
8
methane production
8
three reactors
8
methane yield
8
buffer capacity
8
mesophilic anaerobic
4
anaerobic co-digestion
4

Similar Publications

Waste valorization through anaerobic co-digestion in coffee and swine farms: CH yield optimization and farm-scale viability.

Bioresour Technol

January 2025

Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil. Electronic address:

Article Synopsis
  • * A two-factor central composite rotational design was used to vary the percentage of coffee wastewater and organic matter concentration in the mixture.
  • * The optimal conditions found for high methane output included 14% coffee wastewater, 86% liquid swine manure, and a specific organic matter concentration that significantly enhanced methane yield and production rate while minimizing lag time.
View Article and Find Full Text PDF

Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how adding food wastes like orange peels, orange pulp, and brewery spent grain affects nutrient levels and digestion efficiency in anaerobic digestion, using municipal sewage sludge as the main material.
  • The inclusion of these co-substrates improved the nutrient balance, reducing heavy metal content and enhancing methane production, especially with orange pulp and brewery spent grain.
  • However, combinations containing orange peels and brewery spent grain led to lower biogas and methane yields, with heavy metal accumulation, raising concerns about using the resulting digestates in agriculture due to high levels of copper, zinc, and mercury.
View Article and Find Full Text PDF

Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an alternative substrate for biogas production could meet the increasing demand for energy. In view of this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the first part of the study, two SMS chemical pretreatment processes were investigated and subsequently combined with thermal treatment of the mentioned waste streams.

View Article and Find Full Text PDF

In this work, the feasibility of the anaerobic digestion of paper sludge as a co-substrate in anaerobic digestion mechanical-biological treatment (MBT) plants is investigated. In the first phase, the biochemical properties, biomethane potential (BMP), and pollutant contents of 20 different industrial paper sludges are determined. Following the general evaluation in the BMP tests, the second phase of the project involves the semi-continuous co-digestion of six paper sludges in continuous stirred reactors (CSTR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!