Co-digestion of pulp and paper sludge (PPS) and food waste (FW) in a batch-fed digestion system was conducted on a laboratory scale. Three reactors named A1, A2, and A3 were tested. PPS and FW mixed at different mass ratios of 1:3, 1:1, and 3:1, respectively, were loaded in the reactors. Bioconversion at high efficiency was obtained in the system. The accumulative methane yield of each reactor was 144mLg(-1)VSfed (A1), 256 mL g(-1) VSfed (A2), and 123 mL g(-1)VSfed (A3). The soluble chemical oxygen demand (COD) removal efficiencies reached 73.2% (Al), 93.9% (A2), and 79.6% (A3). A pH in the range 5.8-8.4 was obtained in the three reactors without adjustment due to the high buffer capacity of the mixing feedstock. No toxicity inhibitions of volatile fatty acids and NH3-N occurred in reactor A2. This study showed that it was good for co-digestion of PPS and FW in a mass ratio of 1:1 for methane production, which resulted in higher methane yield, a greater buffer capacity, a higher organics removal efficiency, and a more stable process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2012.673012 | DOI Listing |
Bioresour Technol
January 2025
Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil. Electronic address:
Chemosphere
June 2024
Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil. Electronic address:
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS).
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2023
Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland.
Microorganisms
February 2023
Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
Valorization of lignocellulosic biomass, such as Spent Mushroom Substrate (SMS), as an alternative substrate for biogas production could meet the increasing demand for energy. In view of this, the present study aimed at the biotechnological valorization of SMS for biogas production. In the first part of the study, two SMS chemical pretreatment processes were investigated and subsequently combined with thermal treatment of the mentioned waste streams.
View Article and Find Full Text PDFWaste Manag
May 2022
Faculty of Resource Management, University of Applied Sciences and Arts (HAWK), Rudolf-Diesel-Straße 12, 37075 Göttingen, Germany.
In this work, the feasibility of the anaerobic digestion of paper sludge as a co-substrate in anaerobic digestion mechanical-biological treatment (MBT) plants is investigated. In the first phase, the biochemical properties, biomethane potential (BMP), and pollutant contents of 20 different industrial paper sludges are determined. Following the general evaluation in the BMP tests, the second phase of the project involves the semi-continuous co-digestion of six paper sludges in continuous stirred reactors (CSTR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!