Steam reforming of tar model compound using Pd catalyst on alumina tube.

Environ Technol

Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Published: December 2012

Gasification processing of biomass as a renewable energy source generates tar in the product gas. Tar leads to foul-up of the process equipment by corrosion and deposit formation. Catalytic elimination of tars is a crucial step to improve fuel gas quality from the process. In this study, a palladium catalyst on alumina (Pd/Al2O3) was used in steam reforming of benzene as a biomass gasification tar model compound. The reaction was carried out in a laboratory-scale tube reactor made of stainless steel to study the effect of reaction temperature, catalyst loading, quantity of palladium catalyst tubes, steam to carbon ratio (S/C), and residence time on catalytic performance and stability. Pd/Al2O3 showed high efficiency ofbenzene decomposition and enhanced the formation of fuel gas. Hydrogen and carbon conversions increased with reaction temperature. Although the benzene concentration increased from 2000 to 5000 mg/l, the catalytic performance at 600 degrees C and 800 degrees C was similar. 1.0 wt% Pd/Al2O3 showed excellent catalytic activity with the highest hydrogen and carbon conversions of 83% and 81%, respectively at 800 degrees C. This result is attributed to the smooth surface of the palladium, as noted from scanning electron microscopy imaging. An S/C of 2 provided the highest conversion. The addition of catalyst from four and seven tubes did not result in any great difference in terms of benzene cracking efficiency. The fourth cyclic usage of 1.0 wt% Pd/Al2O3 exhibited a higher conversion than that of 0.5 wt%.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2012.668942DOI Listing

Publication Analysis

Top Keywords

steam reforming
8
tar model
8
model compound
8
catalyst alumina
8
fuel gas
8
palladium catalyst
8
reaction temperature
8
catalyst tubes
8
catalytic performance
8
hydrogen carbon
8

Similar Publications

The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency.

View Article and Find Full Text PDF

Thin-film membranes of Pd-Ag and Pd-Cu alloys capable of releasing hydrogen in a wide temperature range have been developed. The surface activation of the membranes with a nanostructured coating made it possible to intensify hydrogen transport through Pd-containing membranes at low temperatures. This effect was achieved by accelerating limiting surface processes by increasing the active area of the membrane.

View Article and Find Full Text PDF

Life cycle assessment on the role of HS-based hydrogen via HS-methane reforming for the production of sustainable fuels.

Sci Total Environ

January 2025

Research and Innovation Center on CO(2) and Hydrogen (RICH Center), Chemical and Petroleum Engineering Department, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.

Meeting current decarbonization targets requires a shift to a hydrogen energy nexus, yet, water is a valuable resource for hydrogen production, shifting the perspective to the use of HS instead within the context of circular economy. A comprehensive understanding of the environmental impacts, using a cradle-to-gate life cycle assessment (LCA), was developed focusing on the operation of hydrogen sulfide-methane reforming (HSMR) for H production benchmarked to conventional technologies, steam methane reforming (SMR) and SMR + carbon capture (CC), as feedstock to produce sustainable fuels (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The increasing levels of carbon dioxide in the atmosphere have significant adverse effects, prompting research into materials for carbon capture, with layered double hydroxides (LDHs) showing promise due to their high surface area and CO adsorption capabilities.
  • Despite existing reviews on carbon capture materials, there is a lack of comprehensive reviews specifically addressing LDH-based materials, highlighting the need for updated analysis in this rapidly evolving field.
  • This review article aims to fill that gap by providing an overview of recent advancements, synthesis methods, performance factors, and future research directions in CO capture using LDHs, while also discussing existing challenges and knowledge gaps.
View Article and Find Full Text PDF

In recent times, characterized by the rapid advancement of science and technology, the educational system has continuously evolved. Within this modern educational landscape, Science, Technology, Engineering, Arts, and Mathematics (STEAM) education has emerged as a prominent pedagogical paradigm, gaining substantial popularity in college-level instruction and capturing widespread societal attention. Notably, the cultivation of audio-visual aesthetic proficiency occupies a central role within this educational approach, prioritizing the enhancement of aesthetic sensibilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!