Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spike timing-dependent plasticity (STDP) modifies synaptic strengths based on timing information available locally at each synapse. Despite this, it induces global structures within a recurrently connected network. We study such structures both through simulations and by analyzing the effects of STDP on pair-wise interactions of neurons. We show how conventional STDP acts as a loop-eliminating mechanism and organizes neurons into in- and out-hubs. Loop-elimination increases when depression dominates and turns into loop-generation when potentiation dominates. STDP with a shifted temporal window such that coincident spikes cause depression enhances recurrent connections and functions as a strict buffering mechanism that maintains a roughly constant average firing rate. STDP with the opposite temporal shift functions as a loop eliminator at low rates and as a potent loop generator at higher rates. In general, studying pairwise interactions of neurons provides important insights about the structures that STDP can produce in large networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578766 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1002906 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!