Loss of chromosome 19p is one of the most frequent allelic imbalances in esophageal squamous cell carcinoma (ESCC), suggesting the existence of one or more tumor suppressor genes within this region. In this study, we investigated a role in ESCCs for a candidate tumor suppressor gene located at 19p13.3, the Ras-like small GTPase DIRAS1. Downregulation of DIRAS1 occurred in approximately 50% of primary ESCCs where it was associated significantly with advanced clinical stage, lymph node metastasis, and poor overall survival. LOH and promoter methylation analyses suggested that loss of DIRAS1 expression was mediated by epigenetic mechanisms. Functional studies established that ectopic re-expression of DIRAS1 in ESCC cells inhibited cell proliferation, clonogenicity, cell motility, and tumor formation. Mechanistic investigations suggested that DIRAS1 acted through extracellular signal-regulated kinase (ERK1/2; MAPK3/1) and p38 mitogen-activated protein kinase (MAPK; MAPK14) signaling to trigger BAD Ser112 dephosphorylation and matrix metalloproteinase (MMP)2/9 transcriptional inactivation to promote apoptosis and inhibit metastasis, respectively. Taken together, our results revealed that DIRAS1 has a pivotal function in ESCC pathogenesis, with possible use as a biomarker and intervention point for new therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-12-2663DOI Listing

Publication Analysis

Top Keywords

tumor suppressor
12
esophageal squamous
8
squamous cell
8
cell carcinoma
8
diras1
7
downregulation novel
4
tumor
4
novel tumor
4
suppressor diras1
4
diras1 predicts
4

Similar Publications

A Japanese woman with Li-Fraumeni syndrome in her 40s underwent comprehensive genetic profiling accompanied by germline data using the Oncoguide NCC Oncopanel, but no germline pathogenic variants in the tumor suppressor gene TP53 were detected. However, careful examination of additional data in the report suggested the presence of a large TP53 deletion. Custom targeting next-generation sequencing and nanopore sequencing revealed a 3.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!