Objective: Transforming growth factor β (TGFβ) is a profibrotic cytokine, and its aberrant function is implicated in several types of fibrotic pathologies including scleroderma (systemic sclerosis [SSc]). Multiple lines of evidence show that increased TGFβ signaling contributes to progressive fibrosis in SSc by promoting fibroblast activation, excessive extracellular matrix (ECM) deposition, and dermal thickening. We have previously identified CD109 as a TGFβ coreceptor and have shown that it antagonizes TGFβ signaling and TGFβ-induced ECM expression in vitro in human keratinocytes and fibroblasts. The aim of the present study was to examine the ability of CD109 to prevent skin fibrosis in a mouse model of bleomycin-induced SSc.
Methods: Transgenic mice overexpressing CD109 in the epidermis and their wild-type (WT) littermates were injected with bleomycin in phosphate buffered saline (PBS) or with PBS alone every other day for 21 days or 28 days. Dermal thickness and collagen deposition were determined histologically using Masson's trichrome and picrosirius red staining. In addition, collagen and fibronectin content was analyzed using Western blotting, and activation of TGFβ signaling was examined by determining phospho-Smad2 and phospho-Smad3 levels using Western blotting and immunohistochemistry.
Results: Transgenic mice overexpressing CD109 in the epidermis showed resistance to bleomycin-induced skin fibrosis, as evidenced by a significant decrease in dermal thickness, collagen crosslinking, collagen and fibronectin content, and phospho-Smad2/3 levels, as compared to their WT littermates.
Conclusion: Our findings suggest that CD109 inhibits TGFβ signaling and fibrotic responses in experimental murine scleroderma. They also suggest that CD109 regulates dermal-epidermal interactions to decrease extracellular matrix synthesis in the dermis. Thus, CD109 is a potential molecular target for therapeutic intervention in scleroderma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.37907 | DOI Listing |
J Clin Invest
January 2025
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, United States of America.
Eccentric contraction- (ECC) induced force loss is a hallmark of murine dystrophin-deficient (mdx) skeletal muscle that is used to assess efficacy of potential therapies for Duchenne muscular dystrophy. While virtually all key proteins involved in muscle contraction have been implicated in ECC force loss, a unifying mechanism that orchestrates force loss across such diverse molecular targets has not been identified. We showed that correcting defective hydrogen sulfide (H2S) signaling in mdx muscle prevented ECC force loss.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Internal Medicine-Cardiovascular, Guangzhou Twelfth People's Hospital, No.1, Tianqiang Road, Tianhe District, Guangzhou City, Guangdong Province, 510620, China.
Myocardial infarction (MI) is a coronary artery-related disease that seriously threatens human life and is the leading cause of sudden death worldwide, where a lack of nutrients and oxygen leads to an inflammatory response and death of cardiomyocytes. Ferroptosis is a form of non-apoptotic cell death associated with metabolic dysfunction, resulting in abnormal breakdown of glutamine and iron-dependent accumulation of reactive oxygen species (ROS) during metabolism. However, the molecular mechanism of ferroptosis in the pathogenesis of MI and the function of Klotho and KRAS on ferroptosis during MI remain unclear.
View Article and Find Full Text PDFCurr Osteoporos Rep
January 2025
Department of Immunology, Tufts University, Boston, MA, 02111, USA.
Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.
Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!