Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic light-emitting diodes (OLEDs) are competitive candidates for the next generation flat-panel displays and solid state lighting sources. Efficient blue-emitting materials have been one of the most important prerequisites to kick off the commercialization of OLEDs. This tutorial review focuses on the design of blue fluorescent emitters and their applications in OLEDs. At first, some typical blue fluorescent materials as dopants are briefly introduced. Then nondoped blue emitters of hydrocarbon compounds are presented. Finally, the nondoped blue emitters endowed with hole-, electron- and bipolar-transporting abilities are comprehensively reviewed. The key issues on suppressing close-packing, achieving pure blue chromaticity, improving thermal and morphological stabilities, manipulating charge transporting abilities, simplifying device structures and the applications in panchromatic OLEDs are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cs35440g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!