Cell-to-cell communication is vital for animal tissues and organs to develop and function as organized units. Throughout development, intercellular communication is crucial for the generation of structural diversity, mainly by the regulation of differentiation and growth. During these processes, several signaling molecules function as messengers between cells and are transported from producing to receptor cells. Thus, a tight spatial and temporal regulation of signaling transport is likely to be critical during morphogenesis. Despite much experimental and theoretical work, the question as to how these signals move between cells remains. Cell-to-cell contact is probably the most precise spatial and temporal mechanism for the transference of signaling molecules from the producing to the receiving cells. However, most of these molecules can also function at a distance between cells that are not juxtaposed. Recent research has shown the way in which cells may achieve direct physical contact and communication through actin-based filopodia. In addition, increasing evidence is revealing the role of such filopodia in regulating spatial patterning during development; in this context, the filopodia are referred to as cytonemes. In this review, we highlight recent work concerning the roles of these filopodia in cell signaling during development. The processes that initiate and regulate the formation, orientation and dynamics of cytonemes are poorly understood but are potentially extremely important areas for our knowledge of intercellular communication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00441-013-1578-x | DOI Listing |
BioData Min
January 2025
Fondazione Bruno Kessler, Trento, Italy.
Biomedical datasets are the mainstays of computational biology and health informatics projects, and can be found on multiple data platforms online or obtained from wet-lab biologists and physicians. The quality and the trustworthiness of these datasets, however, can sometimes be poor, producing bad results in turn, which can harm patients and data subjects. To address this problem, policy-makers, researchers, and consortia have proposed diverse regulations, guidelines, and scores to assess the quality and increase the reliability of datasets.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.
Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.
Respir Res
January 2025
Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.
Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.
View Article and Find Full Text PDFExp Mol Med
January 2025
Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
The spatial organization of cells within a tissue is dictated throughout dynamic developmental processes. We sought to understand whether cells geometrically coordinate with one another throughout development to achieve their organization. The pancreas is a complex cellular organ with a particular spatial organization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!