Endothelial cells have been implicated as key cells in promoting the pathogenesis and spread of cytomegalovirus (CMV) infection. This study describes the isolation and culture of rat brain endothelial cells (RBEC) and further evaluates the infectious potential of a Malaysian rat CMV (RCMV ALL-03) in these cultured cells. Brain tissues were mechanically fragmented, exposed to enzymatic digestion, purified by gradient density centrifugation, and cultured in vitro. Morphological characteristics and expression of von Willebrand factor (factor VIII-related antigen) verified the cells were of endothelial origin. RBEC were found to be permissive to the virus by cytopathic effects with detectable plaques formed within 7 d of infection. This was confirmed by electron microscopy examination which proved the existence of the viral particles in the infected cells. The susceptibility of the virus to these target cells under the experimental conditions described in this report provides a platform for developing a cell-culture-based experimental model for studies of RCMV pathogenesis and allows stimulation of further studies on host cell responses imposed by congenital viral infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-012-9553-5 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Third People's Hospital of Longgang District of Shenzhen, Shenzhen, Guangdong 518020, China.
Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.
Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.
J Transl Med
January 2025
Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.
Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria. Electronic address:
A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(HLn)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-flouro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC ≈ 8-19 μM and A2780R, IC ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:
Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!