Divergent properties of prolamins in wheat and maize.

Planta

Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854, USA.

Published: June 2013

AI Article Synopsis

Article Abstract

Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. Wheat, barley, and oats belong to a different subfamily of the grasses than rice and in addition to maize, millets, sugarcane, and sorghum. All their seeds, however, are largely devoid of free amino acids because they are stored during dormancy in specialized storage proteins. Prolamins, the major class of storage proteins in cereals with preponderance of proline and glutamine, are synthesized at the endoplasmic reticulum during seed development and deposited into subcellular structures of the immature endosperm, the protein bodies. Prolamins have diverged during the evolution of the grass family in their structure and their properties. Here, we used the expression of wheat glutenin-Dx5 in maize to examine its interaction with maize prolamins during endosperm development. Ectopic expression of Dx5 alters protein body morphology in a way that resembles non-vitreous kernel phenotypes, although Dx5 alone does not cause an opaque phenotype. However, if we lower the amount of γ-zeins in Dx5 maize through RNAi, a non-vitreous phenotype emerges and the deformation on the surface of protein bodies is enhanced, indicating that Dx5 requires γ-zeins for its proper subcellular organization in maize.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-013-1857-5DOI Listing

Publication Analysis

Top Keywords

amino acids
8
storage proteins
8
protein bodies
8
maize
6
divergent properties
4
prolamins
4
properties prolamins
4
prolamins wheat
4
wheat maize
4
maize cereal
4

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!