Highly trained athletes are associated with high resting antigen-stimulated whole blood culture interleukin (IL)-10 production. The purpose of the present study was to examine the effects of training status on resting circulating T regulatory (Treg) cell counts and antigen-stimulated IL-10 production and the effect of acute bout of exercise on the Treg response. Forty participants volunteered to participate and were assigned to one of the four groups: sedentary (SED), recreationally active (REC), sprint-trained athletes and endurance-trained athletes (END). From the resting blood sample, CD4(+)CD25(+)CD127(low/-) Treg cells and in vitro antigen-stimulated IL-10 production were assessed. Ten REC subjects performed 60 min cycling at 70 % of maximal oxygen uptake and blood samples for Treg analysis were collected post- and 1 h post-exercise. IL-10 production was greater in END compared with the other groups (P < 0.05). END had a higher Treg percentage of total lymphocyte count compared with SED (P < 0.05). A smaller proportion of Treg CD4(+) cells were observed in SED compared with all other groups (P < 0.05). IL-10 production significantly correlated with the proportion of Tregs within the total lymphocyte population (r s = 0.51, P = 0.001). No effect of acute exercise was evident for Treg cell counts in the REC subjects (P > 0.05). Our results demonstrate that high training loads in END are associated with greater resting IL-10 production and Treg cell count and suggest a possible mechanism for depression of immunity commonly reported in athletes engaged in high training loads.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-013-2614-yDOI Listing

Publication Analysis

Top Keywords

il-10 production
28
antigen-stimulated il-10
12
treg cell
12
training status
8
blood culture
8
circulating regulatory
8
treg
8
cell counts
8
rec subjects
8
compared groups
8

Similar Publications

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

() is the primary agent of bovine tuberculosis (TB) in Mediterranean buffalo, which has a negative economic impact on buffalo herds. Improving TB diagnostic performance in this species represents a key step to eradicate efficiently this disease. We have recently shown the utility of the IFN-γ assay in the diagnosis of infection in Mediterranean buffaloes (), but other cytokines might be useful immunological biomarkers of this infection.

View Article and Find Full Text PDF

Purpose: Schistosomiasis remains a parasitic disease affecting millions of people worldwide, requiring interventions like vaccination. In previous work, our group used reverse vaccinology to identify two epitopes from the Schistosoma mansoni proteins, Sm050890 (44-58) and Sm141290 (225-239). This study evaluated the immune response profile and protection induced by peptides, as a mixture of immunogens, in murine vaccination trials.

View Article and Find Full Text PDF

Background: Increasing evidence shows that postoperative innate immune dysregulation is associated with delayed recovery and infectious complications. The aim of this study was to compare the effects of general versus spinal anesthesia on innate immune function during and after total hip arthroplasty (THA).

Methods: This comparative matched cohort study used data from two single-center randomized-controlled trials.

View Article and Find Full Text PDF

Metabolic reprogramming of macrophages by PKM2 promotes IL-10 production via adenosine.

Cell Rep

January 2025

Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil. Electronic address:

Macrophages play a crucial role in immune responses and undergo metabolic reprogramming to fulfill their functions. The tetramerization of the glycolytic enzyme pyruvate kinase M2 (PKM2) induces the production of the anti-inflammatory cytokine interleukin (IL)-10 in vivo, but the underlying mechanism remains elusive. Here, we report that PKM2 activation with the pharmacological agent TEPP-46 increases IL-10 production in LPS-activated macrophages by metabolic reprogramming, leading to the production and release of ATP from glycolysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!