The equilibrium geometries and electron affinities of the R-SS/R-SS(-)(R=CH₃, C₂H₅, n-C₃H7, i-C₃H₇, n-C₄H₉, t-C₄H₉, n-C₅H₁₁) species have been studied using the higher level of the Gaussian-3(G3) theory and 21 carefully calibrated pure and hybrid density functionals (five generalized gradient approximation (GGA) methods, seven hybrid GGAs, three meta GGA methods, and six hybrid meta GGAs) in conjunction with diffuse function augmented double-ζ plus polarization (DZP++) basis sets. The geometries are fully optimized with each method and discussed. The reliable adiabatic electron affinity has been presented by means of the high level of G3 technique. With the DZP++ DFT method, three measures of neutral/anion energy differences reported in this work are the adiabatic electron affinity, the vertical electron affinity, and the vertical detachment energy. The adiabatic electron affinities, obtained at the BP86, M05-2X, B3LYP, M06, B98, M06-2X, mPW1PW91, HCTH, B97-1, M05, PBE1PBE, and VSXC methods, are in agreement with the G3 results. These methods perform better for EA prediction and are considered to be reliable.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-013-1795-yDOI Listing

Publication Analysis

Top Keywords

electron affinities
12
adiabatic electron
12
electron affinity
12
gga methods
8
methods hybrid
8
affinity vertical
8
electron
6
studies structures
4
structures electron
4
affinities simplest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!