Melanoma is a highly lethal malignancy notorious for its aggressive clinical course and eventual resistance to existing therapies. Currently, we possess a limited understanding of the genetic events driving melanoma progression, and much effort is focused on identifying pro-metastatic aberrations or perturbed signaling networks that constitute new therapeutic targets. In this study, we validate and assess the mechanism by which homeobox transcription factor A1 (HOXA1), a pro-invasion oncogene previously identified in a metastasis screen by our group, contributes to melanoma progression. Transcriptome and pathway profiling analyses of cells expressing HOXA1 reveals upregulation of factors involved in diverse cytokine pathways that include the transforming growth factor beta (TGFβ) signaling axis, which we further demonstrate to be required for HOXA1-mediated cell invasion in melanoma cells. Transcriptome profiling also shows HOXA1's ability to potently downregulate expression of microphthalmia-associated transcription factor (MITF) and other genes required for melanocyte differentiation, suggesting a mechanism by which HOXA1 expression de-differentiates cells into a pro-invasive cell state concomitant with TGFβ activation. Our analysis of publicly available data sets indicate that the HOXA1-induced gene signature successfully categorizes melanoma specimens based on their metastatic potential and, importantly, is capable of stratifying melanoma patient risk for metastasis based on expression in primary tumors. Together, these validation data and mechanistic insights suggest that patients whose primary tumors express HOXA1 are among a high-risk metastasis subgroup that should be considered for anti-TGFβ therapy in adjuvant settings. Moreover, further analysis of HOXA1 target genes in melanoma may reveal new pathways or targets amenable to therapeutic intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982326PMC
http://dx.doi.org/10.1038/onc.2013.30DOI Listing

Publication Analysis

Top Keywords

melanoma
8
melanoma progression
8
transcription factor
8
primary tumors
8
hoxa1
6
hoxa1 drives
4
drives melanoma
4
melanoma tumor
4
tumor growth
4
metastasis
4

Similar Publications

Signatures of H3K4me3 modification predict cancer immunotherapy response and identify a new immune checkpoint-SLAMF9.

Respir Res

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.

H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.

View Article and Find Full Text PDF

Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear.

View Article and Find Full Text PDF

Affordability matters: A cross-sectional study on sunscreen cost and application amount.

J Am Acad Dermatol

January 2025

San Francisco VA Health Care System, San Francisco, CA; Department of Dermatology, University of California, San Francisco; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco. Electronic address:

View Article and Find Full Text PDF

In clinical practice, thymopentin (TP-5) is a commonly utilized immunomodulatory peptide drug. The relatively short half-life of TP-5, however, significantly limits its applicability in immunotherapy. Inspired by the structure of the TLR2 ligand lipopeptide Pam3CSK4, fatty acid-modified TP-5 peptides were designed and synthesized in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!