Background: Acute ozone (O(3)) exposure results in greater inflammation and airway hyperresponsiveness (AHR) in obese versus lean mice.

Objectives: We examined the hypothesis that these augmented responses to O(3) are the result of greater signaling through tumor necrosis factor receptor 2 (TNFR2) and/or interleukin (IL)-13.

Methods: We exposed lean wild-type (WT) and TNFR2-deficient (TNFR2(-/-)) mice, and obese Cpe(fat) and TNFR2-deficient Cpe(fat) mice (Cpe(fat)/TNFR2(-/-)), to O(3) (2 ppm for 3 hr) either with or without treatment with anti-IL-13 or left them unexposed.

Results: O(3)-induced increases in baseline pulmonary mechanics, airway responsiveness, and cellular inflammation were greater in Cpe(fat) than in WT mice. In lean mice, TNFR2 deficiency ablated O(3)-induced AHR without affecting pulmonary inflammation; whereas in obese mice, TNFR2 deficiency augmented O(3)-induced AHR but reduced inflammatory cell recruitment. O(3) increased pulmonary expression of IL-13 in Cpe(fat) but not WT mice. Flow cytometry analysis of lung cells indicated greater IL-13-expressing CD(4+) cells in Cpe(fat) versus WT mice after O(3) exposure. In Cpe(fat) mice, anti-IL-13 treatment attenuated O(3)-induced increases in pulmonary mechanics and inflammatory cell recruitment, but did not affect AHR. These effects of anti-IL-13 treatment were not observed in Cpe(fat)/TNFR2(-/-) mice. There was no effect of anti-IL-13 treatment in WT mice.

Conclusions: Pulmonary responses to O(3) are not just greater, but qualitatively different, in obese versus lean mice. In particular, in obese mice, O(3) induces IL-13 and IL-13 synergizes with TNF via TNFR2 to exacerbate O(3)-induced changes in pulmonary mechanics and inflammatory cell recruitment but not AHR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3673194PMC
http://dx.doi.org/10.1289/ehp.1205880DOI Listing

Publication Analysis

Top Keywords

cpefat mice
16
mice
12
obese mice
12
pulmonary mechanics
12
inflammatory cell
12
cell recruitment
12
anti-il-13 treatment
12
pulmonary responses
8
acute ozone
8
ozone exposure
8

Similar Publications

Innate airway hyperresponsiveness (AHR) and augmented responses to ozone, an asthma trigger, are characteristics of obese mice. Systemic inflammation, a condition of increased circulating concentrations of inflammatory moieties, occurs in obesity. We hypothesized that TNF-α, via its effects as a master effector of this systemic inflammation, regulates innate AHR and augmented responses to ozone in obese mice.

View Article and Find Full Text PDF

No Impairment in host defense against Streptococcus pneumoniae in obese CPEfat/fat mice.

PLoS One

May 2015

Division of Infectious Diseases, Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America.

In the US and globally, dramatic increases in the prevalence of adult and childhood obesity have been reported during the last 30 years. In addition to cardiovascular disease, type II diabetes, and liver disease, obesity has recently been recognized as an important risk factor for influenza pneumonia. During the influenza pandemic of 2009, obese individuals experienced a greater severity of illness from the H1N1 virus.

View Article and Find Full Text PDF

Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin (ob/ob mice) or the long isoform of the leptin receptor (db/db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure (Cpe(fat) mice).

View Article and Find Full Text PDF

γδ T cells are required for pulmonary IL-17A expression after ozone exposure in mice: role of TNFα.

PLoS One

June 2015

Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America.

Ozone is an air pollutant that causes pulmonary symptoms. In mice, ozone exposure causes pulmonary injury and increases bronchoalveolar lavage macrophages and neutrophils. We have shown that IL-17A is important in the recruitment of neutrophils after subacute ozone exposure (0.

View Article and Find Full Text PDF

Background: Acute ozone (O(3)) exposure results in greater inflammation and airway hyperresponsiveness (AHR) in obese versus lean mice.

Objectives: We examined the hypothesis that these augmented responses to O(3) are the result of greater signaling through tumor necrosis factor receptor 2 (TNFR2) and/or interleukin (IL)-13.

Methods: We exposed lean wild-type (WT) and TNFR2-deficient (TNFR2(-/-)) mice, and obese Cpe(fat) and TNFR2-deficient Cpe(fat) mice (Cpe(fat)/TNFR2(-/-)), to O(3) (2 ppm for 3 hr) either with or without treatment with anti-IL-13 or left them unexposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!