Synthesis, enzymatic stability and in vitro cytostatic effect of Daunorubicin-GnRH-III derivative dimers.

Bioorg Med Chem Lett

Laboratory of Analytical Chemistry and Biopolymer Structure Analysis, Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany.

Published: April 2013

Bioconjugates containing chemotherapeutic agents attached to peptide hormones, such as gonadotropin-releasing hormone (GnRH), are developed as drug delivery systems for targeted cancer chemotherapy. We report here the synthesis and biochemical characterization of disulfide bond-linked dimeric bioconjugates in which daunorubicin was coupled via an oxime linkage to aminooxyacetylated GnRH-III ([Glp-His-Trp-Ser-His-Asp-Trp-Lys(DauAoa-Cys)-Pro-Gly-NH2]2; where Glp is pyroglutamic acid and Aoa is aminooxyacetyl) and its derivatives modified in position four by N-Me-Ser and Lys(Ac). The in vitro stability/degradation of the bioconjugates was determined in human serum, as well as in the presence of rat liver lysosomal homogenate and digestive enzymes. All compounds were stable at least for 24h in human serum and in the presence of pepsin and trypsin, while they were degraded by lysosomal enzymes. The daunorubicin-GnRH-III derivative dimers were partly digested by α-chymotrypsin; however, they had increased stability compared to the corresponding monomers, making them potential candidates for oral administration. The in vitro cytostatic effect of the compounds was determined on MCF-7 human breast cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. All daunorubicin-GnRH-III derivative dimers exerted slightly increased in vitro cytostatic effect (IC50 values in low μM range) than the corresponding monomeric bioconjugates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.01.114DOI Listing

Publication Analysis

Top Keywords

vitro cytostatic
12
daunorubicin-gnrh-iii derivative
12
derivative dimers
12
human serum
8
synthesis enzymatic
4
enzymatic stability
4
vitro
4
stability vitro
4
cytostatic daunorubicin-gnrh-iii
4
bioconjugates
4

Similar Publications

The current comprehensive study showcases a meticulous synthesis of novel class of α-benzilmonoxime thiocarbohydrazide (BMOTC) derivatives, and manifesting their multifaceted potential as antibacterial, antifungal, and anticancer agents. The synthesis of target compounds was performed in three phases using literature methods. In the first step, benzilmonoxime is synthesized using benzil and hydroxyl amine hydrochloride, followed by benzilmonoxime imine using thiocarbohydrazide.

View Article and Find Full Text PDF

New metal complexes of 1H-benzimidazole-2-yl hydrazones: Cytostatic, proapoptotic and modulatory activity on kinase signaling pathways.

Arch Biochem Biophys

November 2024

Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., build. 9, 1113, Sofia, Bulgaria; University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756, Sofia, Bulgaria. Electronic address:

The copper complexes of two 1H-benzimidazole-2-yl hydrazones were obtained by complexation with copper chloride. The molecular structure of the complexes was studied by microchemical analysis, SEM-EDX, IR and micro-Raman spectroscopy and DFT calculations. It was found that both ligands form 1:1 complexes with the copper, where the Cu ions are coordinated by N-atom from the benzimidazole ring, N-atom of the azomethine bond, O-atom from the ortho-OH group of the aromatic ring and one chlorine atom.

View Article and Find Full Text PDF

Hydroxyurea inhibits proliferation and stimulates apoptosis through inducible nitric oxide synthase in erythroid cells.

Biomed Pharmacother

December 2024

Department of molecular oncology, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Serbia. Electronic address:

Hydroxyurea (hydroxycarbamide, HU) arrests cells in the S-phase by inhibiting ribonucleotide reductase and DNA synthesis, significantly contributing to the release of nitric oxide (NO). We investigated the involvement of inducible NO synthase (NOS2) in the cytostatic effect of HU using in vitro shRNA-induced knockdown of the NOS2 transcript (NOS2) or a specific NOS2 inhibitor (1400W) in human erythroleukemic HEL92.1.

View Article and Find Full Text PDF

Targeted delivery of chemotherapeutic agents is a well-established approach to cancer therapy. Antibody-drug conjugates (ADCs) typically carry toxic payloads attached to a tumor-associated antigen-targeting IgG antibody via an enzyme-cleavable linker that releases the drug inside the cell. Aptamers are a promising alternative to antibodies in terms of antigen targeting; however, their polynucleotide nature and smaller size result in a completely different PK/PD profile compared to an IgG.

View Article and Find Full Text PDF

Measuring the impact of therapy-induced senescence on NK cell phenotypes in cancer.

Methods Cell Biol

November 2024

Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, United States. Electronic address:

Cellular senescence is a damage-induced condition characterized by enduring cell cycle arrest and a heightened secretory profile known as the senescence-associated secretory phenotype (SASP). The SASP consists not only of release of inflammatory cytokines and chemokines that attract and activate a diverse repertoire of innate and adaptive immune cells, but also the upregulation of immunomodulatory cell surface molecules that promote immune clearance of senescent cells. Natural Killer (NK) cells are particularly adept at sensing and eliminating senescent cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!