Infection with single strand RNA (ssRNA) viruses, such as influenza A virus, is known to induce protective acquired immune responses, including the production of neutralizing antibodies. Vaccination also causes a reduction in the number of peripheral blood leukocytes (PBL) shortly after inoculation, a result which may have undesirable adverse effects. The cellular mechanisms for this response have not been elucidated so far. Here we report that formalin-inactivated influenza A whole virus vaccine (whole virion) induces a significant decrease in PBL in mice 5-16 h after administration, whereas an ether-split vaccine (HA split) made from the same influenza virus strain does not induce a similar loss of PBL. Concordant with this reduction in the number of PBL, a rapidly induced and massive production of interferon (IFN)-α is observed when mice are injected with whole virion, but not with HA split vaccines. The role of Toll-like receptors (TLR), which are involved in signal transduction of influenza virus, and the subsequent induction of IFNα were confirmed using mice lacking TLR7, MyD-88, or IFNα/β receptor. We further demonstrated that the observed PBL loss is caused by apoptosis in an IFNα-dependent manner, and not by leukocyte redistribution due to chemokine signaling failure. These findings indicate that RNA-encapsulated whole virion vaccines can rapidly induce a loss of leukocytes from peripheral blood by apoptosis, which may modulate the subsequent immune response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vaccine.2013.02.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!