The enzymatic decomposition of 4-chlorophenol metabolites using an immobilized biocatalyst was investigated in this study. Catechol 1,2-dioxygenase for ortho ring cleavage obtained via cloning of the corresponding gene cphA-I from Arthrobacter chlorophenolicus A6 was overexpressed and purified. It was found that the cphA-I enzyme could catalyze the degradation of catechol, 4-chlorocatechol, and 3-methylcatechol. The expressed enzyme was immobilized onto a natural enzyme support, fulvic acid-activated montmorillonite. The immobilization yield was as high as 63%, and the immobilized enzyme maintained high substrate utilization activity, with only a 15-24% reduction in the specific activity. Kinetic analysis demonstrated marginal differences in νmax and KM values for the free and immobilized enzymes, indicating that inactivation of the immobilized enzyme was minimal. The immobilized enzyme exhibited notably increased stability against changes in the surrounding environment (temperature, pH, and ionic strength). Our results provide useful information for the effective enzymatic biochemical treatment of hazardous organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.01.159DOI Listing

Publication Analysis

Top Keywords

immobilized enzyme
12
immobilized natural
8
natural enzyme
8
enzyme support
8
immobilized
7
enzyme
7
effective biochemical
4
biochemical decomposition
4
decomposition chlorinated
4
chlorinated aromatic
4

Similar Publications

ConspectusIn the search for efficient and selective electrocatalysts capable of converting greenhouse gases to value-added products, enzymes found in naturally existing bacteria provide the basis for most approaches toward electrocatalyst design. Ni,Fe-carbon monoxide dehydrogenase (Ni,Fe-CODH) is one such enzyme, with a nickel-iron-sulfur cluster named the C-cluster, where CO binds and is converted to CO at high rates near the thermodynamic potential. In this Account, we divide the enzyme's catalytic contributions into three categories based on location and function.

View Article and Find Full Text PDF

Nowadays, metal-organic frameworks (MOFs) have been emerged as an efficient platform for enzyme immobilization due to their high porosity, tunability, and chemical versatility. In this study, a series of hybrid lipase@NKMOF-101-M (M = Mg, Mn, Zn, Co, or Ni) biocatalysts were constructed through a facile in situ encapsulation method, and the encapsulation and immobilization of lipase in MOFs were carefully validated. The catalytic activity of lipase@NKMOF-101-Mn was 2-fold higher than that of lipase@ZIF-8 and 3-fold higher than that of lipase@MCM-41 due to its excellent dispersibility and hydrophobicity in hexane.

View Article and Find Full Text PDF

Climate change and the energy crisis, driven by excessive CO emissions, have emerged as pressing global challenges. The conversion of CO into high-value chemicals not only mitigates atmospheric CO levels but also optimizes carbon resource utilization. Enzyme-catalyzed carbon technology offers a green and efficient approach to CO conversion.

View Article and Find Full Text PDF

Various Options for Covalent Immobilization of Cysteine Proteases-Ficin, Papain, Bromelain.

Int J Mol Sci

January 2025

Biophysics and Biotechnology Department, Voronezh State University, 1 Universitetskaya Square, 394018 Voronezh, Russia.

This study explores various methods for the covalent immobilization of cysteine proteases (ficin, papain, and bromelain). Covalent immobilization involves the formation of covalent bonds between the enzyme and a carrier or between enzyme molecules themselves without a carrier using a crosslinking agent. This process enhances the stability of the enzyme and allows for the creation of preparations with specific and controlled properties.

View Article and Find Full Text PDF

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!