Introduction: Biomechanical studies of arthroscopic knots have been performed on sutures that were tied manually and tested immediately after tying. We performed this study to evaluate the knot and the suture during the healing phase, which was not evaluated in these previous studies. Our hypothesis was that the biomechanics features of arthroscopic knots may change in relation to the duration of incubation in biological media simulating synovial fluid. Thus our goal was to study the influence of incubation for 30 days in biological media simulating body fluid using a device to standardize knot tying and allow comparison of arthroscopic sutures.
Materials And Methods: Three Ultra-High Molecular Weight PolyEthylene (UHMPWE) sutures (Fiberwire, Orthocord and Maxbraid) were tested with a self-locking slip knot (SMC knot). Sixty identical knots were tied using a standardized device, and divided into two groups: the control group « D0 » and the group « D30 » where the knots were soaked in biological media simulating body fluid for 30 days. Cyclic loading tests were then performed on the knots in each group using a machine to define four variables: clinical failure, ultimate failure, knot slippage and the characteristics of failure.
Results: There was no significant difference between the two groups for knot resistance at clinical failure or ultimate failure, without regard to the suture, (P<0.05). After cyclic loading, the most slippage occurred in the Orthocord (≈5.6mm) then the Maxbraid (≈3.55mm) and the Fiberwire (≈2.51mm). The only suture whose slippage was influenced by the duration of incubation was Orthocord. At clinical failure, the loop that slipped the most was the Orthocord suture (≈5.45mm) then the Fiberwire (≈4.8mm) and the Maxbraid (≈4.1mm). In the Orthocord and Maxbraid sutures, knot slippage after clinical failure significantly increased with the duration of suture incubation (P<0.05). The reason for failure was breakage from tearing of suture fibers in all cases.
Conclusion: Prolonged incubation of arthroscopic suture knots influences slippage, which could result in unsuccessful primary attachment of the tendon during the healing phase.
Level Of Evidence: Level IV. Biomechanical study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.otsr.2012.09.020 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Strasbourg, UMR 7213 CNRS, 74, Route du Rhin, 67401, Illkirch-Strasbourg, FRANCE.
Molecular recognition and detection of small bioactive molecules, like neurotransmitters, remain a challenge for chemists, whereas nature found an elegant solution in form of protein receptors. Here, we introduce a concept of a dynamic artificial receptor that synergically combines molecular recognition with dynamic imine bond formation inside a lipid nanoreactor, inducing a fluorescence response. The designed supramolecular system combines a lipophilic recognition ligand derived from a boronic acid, a fluorescent aldehyde based on push-pull styryl pyridine and a phenol-based catalyst.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA.
Peptides are widely used in biomaterials due to their ease of synthesis, ability to signal cells, and modify the properties of biomaterials. A key benefit of using peptides is that they are natural substrates for cell-secreted enzymes, which creates the possibility of utilizing cell-secreted enzymes for tuning cell-material interactions. However, these enzymes can also induce unwanted degradation of bioactive peptides in biomaterials, or in peptide therapies.
View Article and Find Full Text PDFTrials
January 2025
Department of Traditional Chinese Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, P. R. China.
Background: The aim of this study is to evaluate the efficacy and safety of diacylglycerol (DAG) edible oil intervention in patients with chronic metabolic syndrome complicated by asymptomatic hyperuricemia through a multicenter, prospective, double-blind, randomized controlled clinical trial.
Methods: A multicenter, double-blind, and randomized controlled trial involving 176 patients was designed. All patients with chronic metabolic syndrome complicated by asymptomatic hyperuricemia who meet inclusion and exclusion criteria will be included in the study and will be randomized to either group A or group B.
Cardiovasc Diabetol
January 2025
Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy.
Background: The triglyceride-glucose (TyG) index is now widely recognized as a marker of insulin resistance and has been linked to the development and prognosis of atherosclerotic cardiovascular diseases (ASCVD) in numerous populations, particularly in the Eastern world. Although there are fewer reports from the Western world, and they are sometimes contradictory, the absence of definitive data on the relationship between a raised TyG index and cardiovascular risk suggested the opportunity of testing this biochemical marker against a well-established vascular marker such as the carotid intima media thickness (c-IMT).
Methods: Primary prevention patients were selected from a cohort of individuals who underwent c-IMT measurement between 1984 and 2018 at the Dyslipidemia Center at the ASST Grande Ospedale Metropolitano Niguarda in Milan, Italy.
Cardiovasc Diabetol
January 2025
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.
Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!