Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The degradation reaction of thermally treated 3-deoxy-d-erythro-hexos-2-ulose and methylglyoxal, both key intermediates in Maillard chemistry, was investigated. Different analytical strategies were accomplished to cover the broad range of formed products and their different chemical behavior. These involved HPLC-DAD and accordingly LC/MS analysis of the quinoxaline derivates, GC/MS analysis of the acetylated quinoxalines, and GC-FID analysis of the decyl ester of acetic acid. As a main degradation product of 3-deoxy-d-erythro-hexos-2-ulose, 5-(hydroxymethyl)furfural could be identified. At alkaline pH values, 3-deoxy-d-erythro-hexos-2-ulose generated various acids but no colored products. In contrast, thermal treatment of methylglyoxal yielded high molecular weight, brownish products. A dimer of methylglyoxal, first precursor for aldol-based polymerization of methylglyoxal, could be clearly identified by GC/MS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf302959k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!