Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pyrite FeS2 is receiving a resurgence of interest as a uniquely attractive thin film solar absorber based on abundant, low-cost, nontoxic elements. Here we address, via ex situ sulfidation synthesis, the long-standing problem of understanding conduction and doping in FeS2 films, an elusive prerequisite to successful solar cells. We find that an abrupt improvement in crystallinity at intermediate sulfidation temperatures is accompanied by unanticipated crossovers from intergranular hopping to conventional transport, and, remarkably, from hole-like to electron-like Hall coefficients. The hopping is found to occur between a small volume fraction of conductive nanoscopic sulfur-deficient grain cores (beneath our X-ray diffraction detection limits), embedded in nominally stoichiometric FeS2. In addition to placing constraints on the conditions under which useful properties can be obtained from FeS2 synthesized in diffusion-limited situations, these results also emphasize that FeS2 films are not universally p-type. Indeed, with no knowledge of the active transport mechanism we demonstrate that the Hall coefficient alone is insufficient to determine the sign of the carriers. These results elucidate the possible transport mechanisms in thin film FeS2 in addition to their influence on the deduced carrier type, an enabling advancement with respect to understanding and controlling doping in pyrite films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn4003264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!