In order to explore the regulation approaches for improving the salt-tolerance of alfalfa, the seedlings of Medicago sativa L. cv. Gannong No. 4 were taken to study their growth and nitrogen metabolism under salt stress as affected by NO-donor SNP, NO-scavenger c-PTIO, and sodium ferrocyanide (a SNP analogue with NO not released). Exogenous NO could obviously alleviate the inhibition effects of salt stress on the seedling growth and photosynthesis via increasing plant dry matter and leaf chlorophyll content, net photosynthesis rate, transpiration rate, and soluble protein content. Exogenous NO enhanced the activities of leaf nitrate reductase, glutamine synthetase, and glutamate-oxoglutarate aminotransferase, restrained the activities of protease and glutamate dehydrogenase, decreased the free amino acid content, and improved the nitrate content and ammonium assimilation under salt stress. Applying sodium ferrocyanide did not show any alleviation effect on the seedling growth and nitrogen metabolism under salt stress. As a NO-scavenger, c-PTIO inhibited the growth and nitrogen metabolism under salt stress, but the inhibition effect could be mitigated by supplementing SNP. It was suggested that exogenous and endogenous NO were involved in the regulation of alfalfa nitrogen metabolism under salt stress.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!