The plum curculio, Conotrachelus nenuphar, is a major pest of stone and pome fruit (e.g., apples, pears, peaches, cherries, etc.). Entomopathogenic nematodes (Steinernema spp. and Heterorhabditis spp.) may be used to control the larval stage of C. nenuphar following fruit drop. Indeed, certain entomopathogenic nematodes species have previously been shown to be highly effective in killing C. nenuphar larvae in laboratory and field trials. In field trials conducted in the Southeastern, USA, Steinernema riobrave has thus far been shown to be the most effective species. However, due to lower soil temperatures, other entomopathogenic nematode strains or species may be more appropriate for use against C. nenuphar in the insect's northern range. Thus, the objective of this study was to conduct a broad screening of entomopathogenic nematodes. Under laboratory conditions, we determined the virulence of 13 nematode strains (comprising nine species) in two different soils (a loam and clay-loam) and three different temperatures (12°C, 18°C, and 25°C). Superior virulence was observed in S. feltiae (SN strain), S. rarum (17 C&E strain), and S. riobrave (355 strain). Promising levels of virulence were also observed in others including H. indica (HOM1 strain), H. bacteriophora (Oswego strain), S. kraussei, and S. carpocapsae (Sal strain). All nematode treatments were affected by temperature with the highest virulence observed at the highest temperature (25°C). In future research, field tests will be used to further narrow down the most suitable nematode species for C. nenuphar control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547350 | PMC |
Sci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
Background: Biomphalaria glabrata acts as the intermediate host of schistosomes that causes human schistosomiasis. Symbiotic bacteria, Xenorhabdus and Photorhabdus associated with Steinernema and Heterorhabditis, produce secondary metabolites with several biological activities. Controlling B.
View Article and Find Full Text PDFBMC Genomics
December 2024
School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
Background: Parasitic nematodes significantly undermine global human and animal health and productivity. Parasite control is reliant on anthelmintic administration however over-use of a limited number of drugs has resulted in escalating parasitic nematode resistance, threatening the sustainability of parasite control and underscoring an urgent need for the development of novel therapeutics. FMRFamide-like peptides (FLPs), the largest family of nematode neuropeptides, modulate nematode behaviours including those important for parasite survival, highlighting FLP receptors (FLP-GPCRs) as appealing putative novel anthelmintic targets.
View Article and Find Full Text PDFHelminthologia
September 2024
Plant Protection Research Institute, Duc Thang, Bac Tu Liem, Ha Noi, Viet Nam.
The brown marmorated stink bug (), a native of Asia, has become an invasive pest in North America and Europe. Given the severity of and the need for better and environmentally-friendly control methods for this pest, we evaluated the virulence four entomopathogenic nematode species (, and ) that occur naturally in soils in southern Việt Nam and compared them with that of a commercially available strain of . We report for the first time the pathogenicity of towards BMSB.
View Article and Find Full Text PDFPestic Biochem Physiol
January 2025
Laboratory of Nematology, Institute of Agri-food, Animal and Environmental Sciences (ICA3), Universidad de O'Higgins, Campus Colchagua, Chile; Centre of System Biology for Crop Protection (BIOSAV-UOH), Universidad de O'Higgins, Chile. Electronic address:
Entomopathogenic nematodes (EPNs) of the genera Heterorhabditis and Steinernema represent an alternative for the biological control of insects. The limited half-life of EPNs is still one of the most concerning issues in their commercialization. Lipid peroxidation (LPO) caused by reactive oxygen species (ROS) may be one of the most important causes of loss of infectivity and survival of EPNs when exposed to various physicochemical stress conditions (temperature, pH, hypoxia and osmotic pressure).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!