Gene expression profiling was performed on the human neuroglial cell line T98G after treatment with adaptogen ADAPT-232 and its constituents - extracts of Eleutherococcus senticosus root, Schisandra chinensis berry, and Rhodiola rosea root as well as several constituents individually, namely, eleutheroside E, schizandrin B, salidroside, triandrin, and tyrosol. A common feature for all tested adaptogens was their effect on G-protein-coupled receptor signaling pathways, i.e., cAMP, phospholipase C (PLC), and phosphatidylinositol signal transduction pathways. Adaptogens may reduce the cAMP level in brain cells by down-regulation of adenylate cyclase gene ADC2Y and up-regulation of phosphodiesterase gene PDE4D that is essential for energy homeostasis as well as for switching from catabolic to anabolic states and vice versa. Down-regulation of cAMP by adaptogens may decrease cAMP-dependent protein kinase A activity in various cells resulting in inhibition stress-induced catabolic transformations and saving of ATP for many ATP-dependant metabolic transformations. All tested adaptogens up-regulated the PLCB1 gene, which encodes phosphoinositide-specific PLC and phosphatidylinositol 3-kinases (PI3Ks), key players for the regulation of NF-κB-mediated defense responses. Other common targets of adaptogens included genes encoding ERα estrogen receptor (2.9-22.6 fold down-regulation), cholesterol ester transfer protein (5.1-10.6 fold down-regulation), heat shock protein Hsp70 (3.0-45.0 fold up-regulation), serpin peptidase inhibitor (neuroserpin), and 5-HT3 receptor of serotonin (2.2-6.6 fold down-regulation). These findings can be reconciled with the observed beneficial effects of adaptogens in behavioral, mental, and aging-associated disorders. Combining two or more active substances in one mixture significantly changes deregulated genes profiles: synergetic interactions result in activation of genes that none of the individual substances affected, while antagonistic interactions result in suppression some genes activated by individual substances. These interactions can have an influence on transcriptional control of metabolic regulation both on the cellular level and the level of the whole organism. Merging of deregulated genes array profiles and intracellular networks is specific to the new substance with unique pharmacological characteristics. Presumably, this phenomenon could be used to eliminate undesirable effects (e.g., toxic effects) and increase the selectivity of pharmacological intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576868PMC
http://dx.doi.org/10.3389/fnins.2013.00016DOI Listing

Publication Analysis

Top Keywords

fold down-regulation
12
metabolic regulation
8
tested adaptogens
8
plc phosphatidylinositol
8
deregulated genes
8
interactions result
8
individual substances
8
adaptogens
6
down-regulation
5
genes
5

Similar Publications

Transcriptome response in a marine copepod under multigenerational exposure to ocean warming and Ni at an environmentally realistic concentration.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems /College of the Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address:

Due to anthropogenic activities, coastal areas have been challenged with multi-stresses such as ocean warming and nickel (Ni) pollution. Currently, studies have concerned the combined effects of Ni and warming in marine organisms at the phenotypic level; however, the underlying molecular mechanisms are poorly known. In this study, a marine copepod Tigriopus japonicus was maintained under warming (+ 4℃) and an environmentally realistic level of Ni (20 μg/L) alone or combined for three generations (F0-F2).

View Article and Find Full Text PDF

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Objective: The limited predictive effect of genotype on familial Mediterranean fever (FMF) phenotype suggests that epigenetic factors and alternative mechanisms that may cause IL-1β release could contribute to phenotypic heterogeneity. The objective of this study was to examine the role of IL-1β levels and miR-21-5p, cathepsin B and pyrin levels, which were identified as potential factors causing IL-1β release through the use of bioinformatics tools, in the pathogenesis of FMF and their relationship with disease severity.

Materials And Methods: 50 paediatric patients with FMF and 40 healthy children were enrolled in this study.

View Article and Find Full Text PDF

The haemocyte highly-expressed E-type prostanoid receptor regulates TNF expression during immune response of oyster Crassostrea gigas.

Fish Shellfish Immunol

December 2024

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.

Prostaglandin E2 imparts diverse physiological effects on multiple cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4), among which the EP4 is one of subtypes known to mediate the immune response in mammalian monocytes and macrophages. However, the precise characteristics and functions of EP4 in mollusks remain unclear. In the present study, an EP4 homologue (designated as CgEP4) was identified from oyster Crassostrea gigas.

View Article and Find Full Text PDF

Objective: To explore the biological relationship between the regulatory signal pathways involved in differentially expressed genes and recurrent spontaneous abortion (RSA) by analyzing the gene expression microarray data of unexplained RSA.

Methods: The gene expression profile data of chorionic villi from unexplained recurrent abortion with normal karyotype and selective induced abortion were compared. Differentially expressed genes were analyzed by the "Limma" package in R Studio, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out with "Cluster Profiler" and "org.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!