Lysosomal storage disorders (LSD) are rare entities of recessive inheritance. The presence of a "founder" mutation in isolated communities with a high degree of consanguinity (e.g., tribes in the Middle East North Africa, MENA, region) is expected to lead to unusually high disease prevalence. The primary aim of this study was to estimate the prevalence of LSD and report their mutation spectrum in UAE. Between 1995 and 2010, 119 patients were diagnosed with LSD (65 Emiratis and 54 non-Emiratis). Genotyping was performed in 59 (50 %) patients (39 Emirati from 17 families and 20 non-Emiratis from 17 families). The prevalence of LSD in Emiratis was 26.9/100,000 live births. Sphingolipidoses were relatively common (9.8/100,000), with GM1-gangliosidosis being the most prevalent (4.7/100,000). Of the Mucopolysaccharidoses VI, IVA and IIIB were the predominant subtypes (5.5/100,000). Compared to Western countries, the prevalence of fucosidosis, Batten disease, and α-mannosidosis was 40-, sevenfold, and fourfold higher in UAE, respectively. The prevalence of Pompe disease (2.7/100,000) was similar to The Netherlands, but only the infantile subtype was found in UAE. Sixteen distinct LSD mutations were identified in 39 Emirati patients. Eight (50 %) mutations were reported only in Emirati, of which three were novel [c.1694G>T in the NAGLU gene, c.1336 C>T in the GLB1 gene, and homozygous deletions in the CLN3 gene]. Twenty-seven (42 %) patients were clustered in five of the 70 Emirati tribes. These findings highlight the need for tribal-based premarital testing and genetic counseling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755583PMC
http://dx.doi.org/10.1007/8904_2012_182DOI Listing

Publication Analysis

Top Keywords

lysosomal storage
8
storage disorders
8
prevalence lsd
8
lsd emiratis
8
prevalence
6
lsd
6
prevalence novel
4
novel mutations
4
mutations lysosomal
4
disorders united
4

Similar Publications

Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy.

View Article and Find Full Text PDF

Lysosomal storage disorders characterized by defective heparan sulfate (HS) degradation, such as Mucopolysaccharidosis type IIIA-D (MPS-IIIA-D), result in neurodegeneration and dementia in children. However, dementia is preceded by severe autistic-like behaviours (ALBs), presenting as hyperactivity, stereotypies, social interaction deficits, and sleep disturbances. The absence of experimental studies on ALBs' mechanisms in MPS-III has led clinicians to adopt symptomatic treatments, such as antipsychotics, which are used for non-genetic neuropsychiatric disorders.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanosized, membrane-bound structures that have emerged as promising tools for drug delivery, especially in the treatment of lysosomal storage disorders (LSDs) with central nervous system (CNS) involvement. This review highlights the unique properties of EVs, such as their biocompatibility, capacity to cross the blood-brain barrier (BBB), and potential for therapeutic cargo loading, including that of enzymes and genetic material. Current therapies for LSDs, like enzyme replacement therapy (ERT), often fail to address neurological symptoms due to their inability to cross the BBB.

View Article and Find Full Text PDF

Pompe disease is a neuromuscular disorder caused by a deficiency of the enzyme acid alpha-glucosidase (), which leads to lysosomal glycogen accumulation and progressive development of muscle weakness. Two distinct isoforms have been identified. In the infantile form, the weakness is often severe and leads to motor difficulties from the first few months of life.

View Article and Find Full Text PDF

Anderson-Fabry disease is a hereditary, progressive, multisystemic lysosomal storage disorder caused by a functional deficiency of the enzyme α-galactosidase A (α-GalA). This defect is due to mutations in the gene, located in the long arm of the X chromosome (Xq21-22). Functional deficiency of the α-GalA enzyme leads to reduced degradation and accumulation of its substrates, predominantly globotriaosylceramide (Gb3), which accumulate in the lysosomes of numerous cell types, giving rise to the symptomatology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!