Unique time trends of polycyclic aromatic hydrocarbons (PAHs) and dichlorodiphenyltrichloroethanes (DDTs) were found in a dated sediment core from Dianchi Lake (DC), an urban lake in Southwest China. The temporal trend of PAHs in DC was not only different from those in China's coastline and remote lakes of China, but also different from those in more developed countries. Identification of sources suggested that PAHs in DC originated primarily from domestic combustion of coal and biomass. However, a change of source from low- and moderate-temperature combustion to high-temperature combustion processes was observed. Different from those in China's coastline and some developed countries, the temporal trend of DDTs in DC mirrored the historical usage of DDTs in China, with erosion of soils and surface runoff from its drainage area the most likely routes of DDT introduction to the lake. Rapid urbanization and industrialization in its catchment, effective interception of point-source pollution, and changes in sources of energy during the last few decades have significantly influenced the vertical profiles of PAHs in DC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-013-1562-8 | DOI Listing |
Anal Chim Acta
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:
Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb 10000, Croatia.
Measurements of polycyclic aromatic hydrocarbons (PAHs) were simultaneously carried out at three different urban locations in Croatia (Zagreb, Slavonski Brod and Vinkovci) characterized as urban residential (UR), urban industrial (UI) and urban background (UB), respectively. This was done in order to determine seasonal and spatial variations, estimate dominant pollution sources for each area and estimate the lifetime carcinogenic health risks from atmospheric PAHs. Mass concentrations of PAHs showed seasonal variation with the highest values during the colder period and the lowest concentration during the warmer period of the year.
View Article and Find Full Text PDFSci Total Environ
January 2025
Marine Toxicology, Institute of Marine Research, Bergen, Norway.
Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants with a widespread presence in diverse environmental contexts. Transformation processes of PAHs via degradation and biotransformation have parallels in humans, animals, plants, fungi, and bacteria. Mapping the transformation products of PAHs is therefore crucial for assessing their toxicological impact and developing effective monitoring strategies.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
The remediation of sites co-contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) poses challenges for efficient and ecofriendly restoration methods. In this study, three strains (Pseudomonas sp. PDC-1, Rhodococcus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!