Bifurcations of large networks of two-dimensional integrate and fire neurons.

J Comput Neurosci

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada.

Published: August 2013

Recently, a class of two-dimensional integrate and fire models has been used to faithfully model spiking neurons. This class includes the Izhikevich model, the adaptive exponential integrate and fire model, and the quartic integrate and fire model. The bifurcation types for the individual neurons have been thoroughly analyzed by Touboul (SIAM J Appl Math 68(4):1045-1079, 2008). However, when the models are coupled together to form networks, the networks can display bifurcations that an uncoupled oscillator cannot. For example, the networks can transition from firing with a constant rate to burst firing. This paper introduces a technique to reduce a full network of this class of neurons to a mean field model, in the form of a system of switching ordinary differential equations. The reduction uses population density methods and a quasi-steady state approximation to arrive at the mean field system. Reduced models are derived for networks with different topologies and different model neurons with biologically derived parameters. The mean field equations are able to qualitatively and quantitatively describe the bifurcations that the full networks display. Extensions and higher order approximations are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10827-013-0442-zDOI Listing

Publication Analysis

Top Keywords

integrate fire
16
two-dimensional integrate
8
neurons class
8
fire model
8
networks display
8
networks
6
model
6
neurons
5
bifurcations large
4
large networks
4

Similar Publications

Background: Long-term exposure to ambient air pollution-including fine particulate matter <2.5µm in diameter (PM)-has previously been associated with incident dementia. As climate change drives longer and more intense wildfire seasons, exposure to PM produced by wildfires may be a unique and increasingly important risk factor for dementia.

View Article and Find Full Text PDF

Dysfunction in fear and stress responses is intrinsically linked to various neurological diseases, including anxiety disorders, depression, and Post-Traumatic Stress Disorder. Previous studies using in vivo models with Immediate-Extinction Deficit (IED) and Stress Enhanced Fear Learning (SEFL) protocols have provided valuable insights into these mechanisms and aided the development of new therapeutic approaches. However, assessing these dysfunctions in animal subjects using IED and SEFL protocols can cause significant pain and suffering.

View Article and Find Full Text PDF

Introduction: Neural stem cells from the subventricular zone (SVZ) neurogenic niche provide neurons that integrate in the olfactory bulb circuitry. However, in response to cortical injuries, the neurogenic activity of the SVZ is significantly altered, leading to increased number of neuroblasts with a modified migration pattern that leads cells towards the site of injury. Despite the increased neurogenesis and migration, many newly generated neurons fail to survive or functionally integrate into the cortical circuitry.

View Article and Find Full Text PDF

Novel high-efficiency nano metal oxide based on phosphorus as smart flame retardants with multiple reactive for sustainable cotton-polyester fabrics.

Int J Biol Macromol

January 2025

Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:

Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).

View Article and Find Full Text PDF

OCCUPATIONAL APPLICATIONSResults from our exploratory study of restaurant worker mental models of injury and safety emphasize the need for improved occupational safety in the culinary industry through targeted interventions for chefs and managers. The analysis we performed showed that managers possess more integrated and coherent mental models of injury and safety than chefs, reflected in network parameters showing better organization of safety concepts. Kitchen training programs should focus on bridging gaps in safety awareness and mitigating hazards such as burns, cuts, slips, and equipment-related risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!